
CIS 1951

Data Persistence
Lecture 9

Last time, in CIS 1951…
Networking in iOS

• HTTP requests and response handling (async/await)

• URLSession for network tasks

• Parsing JSON data, Encodable & Decodable

• Error handling and network best practices

• Questions? Comments? Feedback?

CIS 1951 as a whole

Lectures 1-6: The Basics

Lectures 7-10: Technologies

• Sensors

• Networking

• Data Persistence

Lectures 11-13: Beyond Development

What is Data Persistence?

• Definition: The ability to save data to a permanent storage location, so it can
later be retrieved and used

• Importance:

• Enhances user experience by saving user settings, preferences, and state

• Allows for offline access to data

• Essential for data-intensive applications

Data Persistence
Storing and Managing Data in iOS

TLDR: We want to be able to
REMEMBER stuff

Data Persistence
Storing and Managing Data in iOS

• Options:

• UserDefaults

• Core Data

• File Management

• 3rd Party Libraries (Keychain, SwiftData, etc.)

Data Persistence
Storing and Managing Data in iOS

UserDefaults

• Used to store lightweight user preferences and settings

• Ideal for saving simple configurations (e.g. volume level,
display mode)

• Not intended for sensitive or large quantities of data

UserDefaults
Simple, lightweight storage

• How large is “too large”?

• Ideally <1 MB

• Designed for small pieces of data like booleans, integers,
strings, or small arrays and dictionaries

UserDefaults
Simple, lightweight storage

1 Using UserDefaults

@AppStorage("key") var varName: Type = defaultValue

2 Saving Preferences with UserDefaults

struct FirstView: View {
 @AppStorage("username") var username: String = ""

 var body: some View {
 // Username is automatically saved
 TextField("Enter your username", text: $username)
 .padding()
 }
}

3 Retrieving Preferences with UserDefaults

struct SecondView: View {
 // Retrieve the username from UserDefaults
 // or use a default value
 @AppStorage("username") var username: String = "DefaultUser"

 var body: some View {
 Text("Welcome back, \(username)!")
 .padding()
 }
}

UserDefaults
Best Practices and Limitations

• Ensure default values are set for a better user experience

• Designed for simple data types and small datasets

• Use more secure storage methods for sensitive information

• May lead to clutter and misuse if overused for complex data

Core Data

• Apple’s native framework for object graph and persistence

• Suitable for complex data models with relationships and
extensive data.

• Used in apps requiring data persistence beyond simple
preferences

Core Data
Complex, structured data

• Managed Object Context: The working area for your managed objects, a
"scratch pad” in memory

• Persistent Store Coordinator: Links the objects in the context to the physical
database (e.g., SQLite database)

• Managed Object Model: Defines your entities and relationships, typically
created from a `.xcdatamodel` file.

• Persistent Store: The actual storage location for the data, could be a file on
disk or a database

Core Data
Understanding the Pieces

Core Data
Understanding the Pieces

Core Data: Set Up
Step 1: Create the Data Model

• Xcode > New File
> Data Model

• Define your entities
(i.e. objects) and
attributes (i.e.
properties)

Core Data: Set Up
Step 2: Initialize the Core Data Stack
import CoreData

struct PersistenceController {
 static let shared = PersistenceController()

 let container: NSPersistentContainer

 init() {
 container = NSPersistentContainer(name: "User")
 container.loadPersistentStores { (storeDescription, error) in
 if let error = error as NSError? {
 // Error handling...
 }
 }
 }
}

Core Data: Set Up
Optional: Configuring Storage Options

container = NSPersistentContainer(name: "User")

// Saves data as a binary file instead of SQLite
let description = NSPersistentStoreDescription()
description.type = NSBinaryStoreType
container.persistentStoreDescriptions = [description]

container.loadPersistentStores { …

Core Data: Set Up
Step 3: Add Core Data to Your App

@main
struct MyApp: App {
 let persistenceController = PersistenceController.shared

 var body: some Scene {
 WindowGroup {
 ContentView()
 .environment(\.managedObjectContext,
persistenceController.container.viewContext)
 }
 }
}

• Create: Adding new records to your database

• Read: Fetching existing data

• Update: Modifying existing data

• Delete: Removing data

CRUD Operations
What are they?

CRUD Operations with Core Data

// Create
let newUser = User(context: managedObjectContext)
newUser.name = "John Doe"

CREATE

CRUD Operations with Core Data

// Read
// Traditional way - full control, manual management
let fetchRequest = NSFetchRequest<User>(entityName: "User")
let users = try? managedObjectContext.fetch(fetchRequest)

READ

CRUD Operations with Core Data

// Read
// SwiftUI way - Less control to fetch request details, but seamless integration
struct UserListView: View {
 @FetchRequest(
 entity: User.entity(),
 sortDescriptors: [NSSortDescriptor(keyPath: \User.name, ascending: true)]
) var users: FetchedResults<User>

 var body: some View {
 List(users, id: \.self) { user in
 Text(user.name ?? "Unknown")
 }
 }
}

READ

CRUD Operations with Core Data

// Update
if let firstUser = users.first {
 firstUser.name = "Jane Doe"
}

UPDATE

CRUD Operations with Core Data

// Delete
if let firstUser = users.first {
 managedObjectContext.delete(firstUser)
}

DELETE

CRUD Operations with Core Data

// Save Changes
try? managedObjectContext.save()

SAVE - Write to DB!

Core Data
Best Practices and Limitations

• Regularly save changes to the Managed Object Context

• Be cautious of memory usage and manage object lifecycles

• Can be complex to set up and manage - not suitable for
simple data

• Utilize background contexts for long-running tasks

File Management

• Directly reading from and writing to the file system

• Used when storing large documents or binary data that don’t
fit into structured databases, non-standard file formats or
external files

• Essential for apps that handle media, documents, or require
offline content access

File Management
Direct file system access

1 Writing to a File

func saveTextToFile(text: String, fileName: String) {
 let paths = FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask)
 let fileURL = paths[0].appendingPathComponent(fileName)

 do {
 try text.write(to: fileURL, atomically: true, encoding: .utf8)
 } catch {
 // Handle the error
 print("Error saving file: \(error)")
 }
}

2 Reading from a File

func readTextFromFile(fileName: String) -> String? {
 let paths = FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask)
 let fileURL = paths[0].appendingPathComponent(fileName)

 do {
 let text = try String(contentsOf: fileURL, encoding: .utf8)
 return text
 } catch {
 // Handle the error
 print("Error reading file: \(error)")
 return nil
 }
}

File Management
Best Practices and Limitations

• Organize files into appropriate directories

• Handle errors and data integrity during read/write operations

• Regularly back up important data and manage storage usage

• Manual management means higher complexity

• Potential security risks if sensitive data is not properly encrypted

Keychain

• Secure storage for…

• Sensitive information (e.g. passwords, tokens, and
encryption keys)

• Personal data that must be kept secure

• Protects data even if the device is compromised

Keychain
Secure and sensitive data

1 Saving to Keychain

import KeychainSwift

func saveToKeychain(key: String, value: String) {
 let keychain = KeychainSwift()
 keychain.set(value, forKey: key)
}

2 Reading from Keychain

import KeychainSwift

func readFromKeychain(key: String) -> String? {
 let keychain = KeychainSwift()
 return keychain.get(key)
}

Keychain
Best Practices and Limitations

• Use for small pieces of sensitive data, not large datasets

• Always check for the success or failure of Keychain
operations

• Retrieval and storage processes can be slower due to
encryption and decryption processes

SwiftData

• Similar to Core Data

• Offers a lightweight SQLite database

SwiftData
Flexible for diverse data types

SwiftData vs. Core Data
Which one do I pick?

1 Declaring a Model

import SwiftData

@Model
class Recipe {
 @Attribute(.unique) var name: String
 var summary: String?
 var ingredients: [Ingredient]
}

2 Querying Data in SwiftUI

@Query var recipes: [Recipe]

var body: some View {
 List(recipes) { recipe in
 NavigationLink(recipe.name, destination:
RecipeView(recipe))
 }
}

SwiftData
Best Practices and Limitations

• Very new framework - watch for updates & potential bugs in
edge cases

• Not as feature-rich or complex as Core Data for managing
relationships between data

Coding time!

Link Coming

