
	
CIS	240	Fall	2019:	Final	
	
Please	put	all	answers	in	the	exam	booklet	and	remember	to	number	them	
clearly.		
	
Question	1	{10	pts}	
	
Part	1:	{6	pts}	
Your	job	is	to	design	a	PLA	circuit	that	takes	as	input	a	4	bit	input	I	where	I0	is	the	
LSB	and	I3	is	the	MSB	and	returns	a	high	output	if	and	only	if	the	number	is	a	
palindrome,	which	means	that	you	get	the	same	sequence	of	bits	if	you	read	it	
forward	or	backwards.	As	an	example,	1001	and	0110	are	4-bit	palindromes	while	
1100	is	not.	Please	make	sure	to	label	your	input	signals	clearly.	
	
Part	2:	{4	pts}	
For	this	part	you	are	going	to	redesign	the	circuit	that	you	designed	in	part	1.	This	
time	it	does	not	have	to	be	a	PLA	but	you	are	only	allowed	to	use	2	input	logic	gates	
and	you	cannot	have	more	than	5	of	them.		You	can	use	any	2	input	gates	you	wish,	
AND,	OR,	NAND,	NOR,	XOR,	XNOR.	More	points	will	be	given	for	designs	that	use	
fewer	gates.	
	
Question	2	{10	pts}	
	
For	your	CIS	240	homework	you	write	a	TRAP	routine	that	is	designed	to	place	a	
single	character	on	the	ASCII	output	console.	It	is	called	TRAP_PUTC	and	it	works	
perfectly.	You	are	then	asked	to	write	a	second	routine,	TRAP_PUT_STRING	that	
puts	a	sequence	of	characters	on	the	ASCII	console.	Not	wanting	to	waste	effort,	you	
figure	that	you	can	just	call	your	TRAP_PUTC	trap	repeatedly	as	the	following	
pseudo	code	shows.	
	
TRAP_PUT_STRING	
	 WHILE	(current	character	is	not	null	–	i.e.	not	at	end	of	string)	
	 	 Send	current	character	to	screen	by	using	TRAP		

instruction	to	call	TRAP_PUTC	
	 	 Advance	to	next	character	
	
Would	this	idea	of	using	the	trap	instruction	to	call	TRAP_PUTC	from	inside	
TRAP_PUT_STRING	work?	Carefully	explain	why	or	why	not.	
	
	 	

Question	3	{10	pts}	
	
Your	cousin,	Crazy	Eddie,	is	looking	over	your	slides	for	CIS	240	particularly	the	
ones	on	how	TRAPs	are	handled.	When	he	comes	across	the	slide	shown	below,	he	
snorts	and	says:	“This	is	way	too	complicated!	Why	don’t	we	just	place	the	trap	
routine	we	want	to	call,	TRAP_FOO,	at	the	address	that	TRAP	is	going	to	jump	to,	
x8024,	and	avoid	the	intermediate	JMP	instruction.	That	should	work	just	fine.”	

	
	
Question	1:	Is	Crazy	Eddie	right,	would	the	trap	routine	work	correctly	if	it	were	
moved	up	to	start	at	x8024	avoiding	the	JMP	instruction.	
	
Question	2:	Would	this	change	create	other	potential	problems?	Explain	your	
answer.	
	
	 	

CIS 240

Anatomy of a Trap
• When a TRAP is called the

CPU sets PSR[15]=1,
stores PC+1 in R7 and
Jumps to the entry in the
TRAP Table

• This Entry is another JMP
instruction which redirects
to the TRAP routine

• When RTI is called the PC
is set to R7 which should
contain the return address
and sets PSR[15] = 0

8-27

TRAP TABLE
256 Entries

STR R6, R5, #0

TRAP x24

CONST R6,

x0000

USER CODE
PSR[15] ==0

x0011

x0010

x0012

JMP TRAP_FOO

ADD R5, ...

SLL R6, ...

x8000

OS CODE
PSR[15] == 1

TRAP_FOO

x8024

x90E0

RTI

PSR[15] = 1
PC = x8024
R7 = x0012

PC = TRAP_FOO

PSR[15] = 0
PC = R7 (= x0012)x8200 OS_STARTS

Question	4	{10	pts}	
	
Consider	the	following	C	program	
	
#include	<stdlib.h>	
	
/*	allocate	a	buffer	to	store	100	ints	*/	
void	allocate_buffer	(int	*ptr)	{	
		ptr	=	malloc(100*sizeof(int));	
}	
	
int	main	()	{	
		int	i,	*buf;	
	
		allocate_buffer	(buf);	
		for(i=0;	i	<	100;	++i)	buf[i]	=	i;	
}	
	
Does	the	program	compile	without	issue?	Could	the	code	cause	a	segmentation	
violation	or	not?	Explain	your	answer	briefly.	
	
Question	5	{10	pts}	
	
Your	cousin,	Crazy	Eddie,	is	really	annoyed	by	the	fact	that	he	needs	to	FALIGN	all	of	
his	subroutines	in	LC4	assembly.	He	thinks	that	alignment	wastes	space	and	that	he	
should	be	able	to	start	subroutines	on	any	address	he	pleases.	He	thinks	about	it	for	
a	bit	and	then	brightens	and	replaces	this	line	in	his	assembly	code.	
	
JSR	my_subroutine	
	
With	this	sequence.	
	
LEA	R0,	my_subroutine	
JSRR	R0	
	
	
Will	Crazy	Eddie’s	code	work	even	when	the	subroutine	being	called	starts	on	an	
address	that	isn’t	a	multiple	of	16?	What	are	the	performance	consequences	of	this	
change?	
	
	 	

Question	6	{10	pts}	
	
Consider	the	following	portion	of	a	C	library	which	provides	two	routines	one	for	
adding	an	element	to	a	doubly	linked	list	and	another	for	deleting	an	element.	A	few	
of	the	lines	have	been	blanked	out.		Your	job	is	to	tell	us	what	each	of	the	missing	
lines	should	be	to	correctly	complete	the	code.	
	
#include	<stdlib.h>	
	
typedef	struct	list_elt_tag	{	
		int	number;	
		//	Pointers	to	the	previous	and	next	elements	in	the	list	
		struct	list_elt_tag	*prev,	*next;	
}	list_elt;	
	
	
/*		
	*	Creates	a	new	list	element	and	pushes	it	on	the	front	of	the	list	
	*	returns	a	pointer	to	the	newly	created	element.	
	*/	
	
list_elt	*push	(list_elt	*first_elt,	int	number)	
{	
		list_elt	*elt;	
	
		//	Allocate	a	new	list	element	with	malloc	
		elt	=	malloc	(sizeof(*elt));	
	
		//	If	malloc	fails	end	the	program	
		if	(elt	==	NULL)	{	
				exit	(1);	
		}	
	
		elt->number	=	number;	
			
		MISSING_LINE_1;	
	
		elt->next	=	first_elt;	
	
		if	(first_elt	!=	NULL)	
				first_elt->prev	=	elt;	
	
		//	return	the	pointer	to	the	new	list_elt	
		return	elt;	
}	
	

	
/*	
	*	delete:	Deletes	an	element	from	the	list	returns	a	pointer	to	the	new	
	*	first	element	of	the	list	which	may	just	be	the	old	first	element.	
	*/	
	
list_elt	*delete	(list_elt	*first_elt,	list_elt	*elt)	
{	
		list_elt	*prev,	*next;	
	
		if	(elt	==	NULL	||	first_elt	==	NULL)	{	
				return	first_elt;	
		}	
			
		MISSING_LINE_2;	
	
		next	=	elt->next;	
	
		/*	First	we	fix	the	pointers	of	the	next	and	previous	elements	*/	
		if	(prev)	{	
				prev->next	=	elt->next;	
		}	
			
		if	(next)	{	
				MISSING_LINE_3;	
		}	
			
		MISSING_LINE_4;	
	
		//	Check	if	elt	was	the	first	element	in	the	list	
		if	(elt	==	first_elt)	
						MISSING_LINE_5;	
		else	
				return	first_elt;	
}	
	
	 	

Question	7	(10	pts)	
	
The	following	piece	of	C	code	was	compiled	with	the	lcc	compiler.	
	
void	strcpy	(char	*src,	char	*dest,	int	n)	{	
		int	i;	
		for	(i=0;	i	<	n;	++i)	{	
				if	(src[i])	{	
						dest[i]	=	src[i];	
				}	else	{	
						break;	
				}	
		}	
}	
	
The	resulting	LC4	assembly	code	fragment	is	shown	below.	Several	of	the	assembly	
instructions	have	been	blacked	out.	Your	job	is	to	figure	out	what	those		assembly	
instructions	must	have	been.	
	
;;;;;;;;;;;;;;;;;;;;;;;;;;;;strcpy;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	 	 .CODE	
	 	 .FALIGN	
strcpy	
	 ;;	prologue	
	 STR	R7,	R6,	#-2	 ;;	save	return	address	
	 STR	R5,	R6,	#-3	 ;;	save	base	pointer	
	 ADD	R6,	R6,	#-3	
	 ADD	R5,	R6,	#0	
	 ADD	R6,	R6,	#-1	 ;;	allocate	stack	space	for	local	variables	
	 ;;	function	body	
	 MISSING_INSN_1	
	 STR	R7,	R5,	#-1	
	 JMP	L5_final2019	
L2_final2019	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#3	
	 ADD	R7,	R7,	R3	
	 LDR	R7,	R7,	#0	
	 CONST	R3,	#0	
	 CMP	R7,	R3	
	 MISSING_INSN_2	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#4	
	 ADD	R3,	R7,	R3	
	 LDR	R2,	R5,	#3	
	 ADD	R7,	R7,	R2	

	 LDR	R7,	R7,	#0	
MISSING_INSN_3	

L7_final2019	
L3_final2019	
	 LDR	R7,	R5,	#-1	

MISSING_INSN_4	
	 STR	R7,	R5,	#-1	
L5_final2019	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#5	
	 CMP	R7,	R3	
	 BRn	L2_final2019	
L4_final2019	
L1_final2019	
	 ;;	epilogue	
	 ADD	R6,	R5,	#0	 ;;	pop	locals	off	stack	
	 ADD	R6,	R6,	#3	 ;;	free	space	for	return	address,	base	pointer,	and	return	
value	
	 STR	R7,	R6,	#-1	 ;;	store	return	value	
	 LDR	R5,	R6,	#-3	 ;;	restore	base	pointer	

MISSING_INSN_5	
	 RET	
	
Question	8	(10	pts)	
	
For	the	final	assignment	you	were	asked	to	implement	a	compiler	that	converted	
programs	written	in	the	stack-based	J	language	into	assembly	instructions.		We	
want	to	add	the	following	two	new	commands	to	the	J	language	so	that	we	can	write	
programs	that	access	a	fixed	array	in	global	memory:	
	
global_write	:		Pops	the	first	value	off	the	stack	and	uses	that	as	an	index	into	the	
global	array.	Then	pops	the	next	value	off	of	the	stack	and	stores	this	value	into	the	
indicated	location	in	the	array.	Egs	7	2	global_write	would	store	the	value	7	into	the	
location	global_array[2].	The	entries	7	and	2	would	be	removed	from	the	stack.	
	
global_read	:	Pops	the	first	element	off	of	the	stack	and	uses	this	as	an	index	into	
the	global	array.	It	stores	the	value	at	that	location	in	the	global	array	at	the	top	of	
the	stack.	Egs.	3	global_read	–	would	place	the	value	stored	in	global_array[3]	at	the	
top	of	the	stack,	the	3	would	be	removed.	
	
For	each	of	these	two	J	commands	indicate	the	sequence	of	assembly	instructions	
that	your	revised	J	compiler	would	emit	when	it	encountered	them	in	a	program.	
You	can	assume	that	there	is	a	label	in	the	assembly	code	entitled	“global_array”	that	
marks	the	location	where	the	global	array	will	be	stored	in	memory.	Following	C	
convention,	the	array	indices	start	at	0	and	you	can	assume	that	the	at	run	time	the	
array	index	values	will	be	legal.	Please	use	comments	to	indicate	your	thinking.	

	

LC4 Instruction Set Reference v. 2017-01
Mnemonic Semantics Encoding
NOP PC = PC + 1 0000 000x xxxx xxxx
BRp <Label> (P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 001i iiii iiii
BRz <Label> (Z) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 010i iiii iiii
BRzp <Label> (Z|P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 011i iiii iiii
BRn <Label> (N) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 100i iiii iiii
BRnp <Label> (N | P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 101i iiii iiii
BRnz <Label> (N|Z) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 110i iiii iiii
BRnzp <Label> (N|Z|P) ? PC = PC + 1 + (sext(IMM9) o�set to <Label>) 0000 111i iiii iiii
ADD Rd Rs Rt Rd = Rs + Rt 0001 ddds ss00 0ttt
MUL Rd Rs Rt Rd = Rs * Rt 0001 ddds ss00 1ttt
SUB Rd Rs Rt Rd = Rs - Rt 0001 ddds ss01 0ttt
DIV Rd Rs Rt Rd = Rs / Rt 0001 ddds ss01 1ttt
ADD Rd Rs IMM5 Rd = Rs + sext(IMM5) 0001 ddds ss1i iiii
MOD Rd Rs Rt Rd = Rs % Rt 1010 ddds ss11 xttt
AND Rd Rs Rt Rd = Rs & Rt 0101 ddds ss00 0ttt
NOT Rd Rs Rd = ~Rs 0101 ddds ss00 1xxx
OR Rd Rs Rt Rd = Rs | Rt 0101 ddds ss01 0ttt
XOR Rd Rs Rt Rd = Rs · Rt 0101 ddds ss01 1ttt
AND Rd Rs IMM5 Rd = Rs & sext(IMM5) 0101 ddds ss1i iiii
LDR Rd Rs IMM6 Rd = dmem[Rs + sext(IMM6)] 0110 ddds ssii iiii
STR Rt Rs IMM6 dmem[Rs + sext(IMM6)] = Rt 0111 ttts ssii iiii
CONST Rd IMM9 Rd = sext(IMM9) 1001 dddi iiii iiii
HICONST Rd UIMM8 Rd = (Rd & 0xFF) | (UIMM8 << 8) 1 1101 dddx uuuu uuuu
CMP Rs Rt NZP = sign(Rs - Rt) 2 0010 sss0 0xxx xttt
CMPU Rs Rt NZP = sign(uRs - uRt) 3 0010 sss0 1xxx xttt
CMPI Rs IMM7 NZP = sign(Rs - sext(IMM7)) 0010 sss1 0iii iiii
CMPIU Rs UIMM7 NZP = sign(uRs - UIMM7) 0010 sss1 1uuu uuuu
SLL Rd Rs UIMM4 Rd = Rs << UIMM4 1010 ddds ss00 uuuu
SRA Rd Rs UIMM4 Rd = Rs >>> UIMM4 1010 ddds ss01 uuuu
SRL Rd Rs UIMM4 Rd = Rs >> UIMM4 1010 ddds ss10 uuuu
JSRR Rs R7 = PC + 1; PC = Rs 0100 0xxs ssxx xxxx
JSR <Label> R7 = PC + 1; PC = (PC & 0x8000) | ((IMM11 o�set to <Label>) << 4) 0100 1iii iiii iiii
JMPR Rs PC = Rs 1100 0xxs ssxx xxxx
JMP <Label> PC = PC + 1 + (sext(IMM11) o�set to <Label>) 1100 1iii iiii iiii
TRAP UIMM8 R7 = PC + 1; PC = (0x8000 | UIMM8); PSR [15] = 1 1111 xxxx uuuu uuuu
RTI PC = R7; PSR [15] = 0 1000 xxxx xxxx xxxx

Pseudo-Instructions
RET Return to R7 JMPR R7
LEA Rd <Label> Store address of <Label> in Rd CONST/HICONST
LC Rd <Label> Store value of constant <Label> in Rd CONST/HICONST

Assembler Directives
.CODE Current memory section contains instruction code
.DATA Current memory section contains data values
.ADDR UIMM16 Set current memory address value to UIMM16
.FALIGN Pad current memory address to next multiple of 16
.FILL IMM16 Current memory address’s value = IMM16
.STRINGZ "String" Expands to a .FILL for each character in "String"
.BLKW UIMM16 Reserve UIMM16 words of memory from the current address
<Label> .CONST IMM16 Associate <Label> with IMM16
<Label> .UCONST UIMM16 Associate <Label> with UIMM16

0101: opcode or sub-opcode ddd: destination register sss: source register 1 ttt: source register 2
iii: signed immediate value uuu: unsigned immediate value xxx: “don’t care” value

1In this case the source and destination register are one and the same as HICONST reads and modifies the same register.
2sign(Rs- Rt) results in one of three values: +1, 0, or -1, which set the appropriate bit in the NZP register.
3sign(uRs- uRt) indicates that Rs and Rt are treated as unsigned values.
4The NZP register is updated on any instruction that writes to a register, and on CMPx instructions.

I[8
:6

]

RT
[1

5:
0]

RS
[1

5:
0]

rd
M

ux
.C

TL

rtM
ux

.C
TL

Re
gi

st
er

Fi
le

AL
UI

np
ut

M
ux

.C
TL

AL
L

CT
L

SI
G

NA
LS

(0
x8

00
0

| U
IM

M
8)

I[1
0:

0]

Pr
og

ra
m

M
em

or
y

PC

DA
TA

M
em

or
y

NZ
P

Re
gi

st
er

PS
R[

2:
0]

+ +TE
STI[1
5:

0]

W
rit

e
In

pu
t

In
st

ru
ct

io
n

Ad
dr

es
s

PC
[1

5:
0]

I[1
1:

9]

RS
[1

5:
0]

I[7
:0

]

SE
XT

(I[
10

:0
])

SE
XT

(I[
8:

0]
)

In
st

ru
ct

io
n

rs
.a

dd
r

rt.
ad

dr

rd
.a

dd
r

re
gF

ile
.W

E

I[2
:0

]

I[1
1:

9]

0 1

10

10 2 3 4 (P
C

&
0x

80
00

) |
 (I

M
M

11
<<

4)

PC
M

ux
.C

TL

AL
U.

CT
L

Da
ta

 A
dd

re
ss

Da
ta

 In
pu

t

Da
ta

 O
ut

pu
t

re
gI

np
ut

M
ux

.C
TL

DA
TA

.W
E

Si
ng

le
 C

yc
le

 Im
pl

em
en

ta
tio

n
of

 th
e

LC
4

IS
A

NZ
P.

W
E

0x
07

0 1

rs
M

ux
.C

TL

0 1
0x

07
2

I[1
1:

9]

I[1
1:

9]

NZ
P

Te
st

er

+1

5

PC
+1

0 1 2

AL
U

Br
an

ch
 U

ni
t

De
co

de

I[1
5:

0]

Pr
iv
ile
ge

.C
TL

PS
R[
15

]

A B

0 1

C

Description	of	Control	Signals	in	Single	Cycle	Implementation	of	the	LC4	ISA	
	

Signal	Name	 #	of	bits	 Value	 Action	
PCMux.CTL	 3	 0	 Value	of	NZP	register	compared	to	bits	I[11:9]	of	the	current	

instruction	if	the	test	is	satisfied	then	the		output	of	TEST	is	1	and	
NextPC	=	BRANCH	Target,	(PC+1)	+	SEXT(IMM9);	otherwise	the	
output	of	TEST	is	0	and	NextPC	=	PC	+	1	

1	 Next	PC	=	PC+1	
2	 Next	PC	=	(PC+1)	+	SEXT(IMM11)	
3	 Next	PC	=	RS	
4	 Next	PC	=	(0x8000	|	UIMM8)	
5	 Next	PC	=	(PC	&	0x8000)	|	(IMM11	<<	4)	

rsMux.CTL	 2	 0	 rs.addr	=	I[8:6]	
1	 rs.addr	=	0x07	
2	 rs.addr	=	I[11:9]	

rtMux.CTL	 1	 0	 rt.addr	=	I[2:0]	
1	 rt.addr	=	I[11:9]	

rdMux.CTL	 1	 0	 rd.addr	=	I[11:9]	
1	 rd.addr	=	0x07	

regFile.WE	 1	 0	 Register	file	not	written	
1	 Register	file	written:	rd.addr	indicates	which	register	is	updated	

with	the	value	on	the	Write	Input	
regInput.Mux.CTL	 2	 0	 Write	Input	=	ALU	output	

1	 Write	Input	=	Output	of	Data	Memory	
2	 Write	Input	=	PC	+	1	

NZP.WE	 	 1	 0	 NZP	register	not	updated	
1	 NZP	register	updated	from	Write	Input	to	register	file	

DATA.WE	 1	 0	 Data	Memory	not	written	
1	 Data	Input	written	into	location	on	Data	Address	lines	

Privilege.CTL	 2	 0	 PSR[15]	=	0	–	Clear	privilege	bit	
1	 PSR[15]	=	1	–	Set	privilege	bit	
2	 PSR[15]	unchanged	–	no	change	to	privilege	bit	

ALUInputMux.CTL	 1	 0	 B[15:0]	=	RT[15:0]	–	B	input	to	ALU	=	RT	
1	 B[15:0]	=	I[15:0]	–	B	input	to	ALU	=	Instruction	Word	

	
Signal	Name	 #	of	bits	 Value	 Action	
ALU.CTL	 6	 	 	

Arithmetic	Ops	 0	 C	=	A	+	B	:	Addition	
1	 C	=	A	*	B	:	Multiplication	
2	 C	=	A	-	B	:	Subtraction	
3	 C	=	A	/	B	:	Division	
4	 C	=	A	%	B	:	Modulus	
5	 C	=	A	+	SEXT(B[4:0])	
6	 C	=	A	+	SEXT(B[5:0])	

Logical	Ops	 8	 C	=	A	AND	B	:	Bitwise	Logical	Product	
9	 C	=	NOT	A:	Bitwise	Negation	
10	 C	=	A	OR	B:	Bitwise	Logical	Sum	
11	 C	=	A	XOR	B:	Bitwise	Exclusive	OR	
12	 C	=	A	AND	SEXT(B[4:0])	

Comparator	Ops	 16	 C	=	signed-CC(A-B)	[-1,	0,	+1]	
17	 C	=	unsigned-CC(A-B)	[-1,	0,	+1]	
18	 C	=	signed-CC(A-SEXT(B[6:0]))	[-1,	0,	+1]	
19	 C	=	unsigned-CC(A-SEXT(B[6:0]))	[-1,	0,	+1]	

Shifter	Ops	 24	 C	=	A	<<	B[3:0]	:	Shift	Left	Logical	
25	 C	=	A	>>>	B[3:0]	:	Shift	Right	Arithmetic	
26	 C	=	A	>>	B[3:0]	:	Shift	Right	Logical	

Constant	Ops	 32	 C	=	SEXT(B[8:0])	
33	 C	=	(A	&	OxFF)	|	(B[7:0]	<<	8)	

	

