
CIS	240	Fall	2018:	Final	
	
Please	put	all	answers	in	the	exam	booklet	and	remember	to	number	them	
clearly.		
	
Question	1	{10	pts}	
	
Your	job	is	to	design	a	gate	level	combinational	circuit	that	takes	as	input	a	3	bit	
unsigned	number	and	produces	as	output	that	number	plus	1	in	a	3	bit	unsigned	
output,	so	if	the	input	number	is	5	the	output	should	be	6,	if	the	input	is	3	the	output	
should	be	4,	if	the	input	is	7	the	output	should	be	0	because	of	wraparound.	The	
three	inputs	should	be	labeled	I2,	I1	and	I0	where	I2	is	the	MSB	and	I0	is	the	LSB.	
Similarly,	the	output	bits	must	be	labeled	02,	O1	and	O0.	
	
Part	1	{4	pts}:	Produce	a	table	showing	what	the	output	should	be	for	every	
possible	input.	
Part	2	{6	pts}:	Design	a	circuit	that	performs	the	operation.	Make	sure	to	clearly	
label	all	inputs	and	outputs.	You	can	use	any	gates	you	want,	including	xor	gates.	
More	points	will	be	given	for	answers	that	use	fewer	gates	so	think	carefully	before	
implementing.	
	
Answer:	
	

I2	 I1	 I0	 02	 01	 00	
0	 0	 0	 0	 0	 1	
0	 0	 1	 0	 1	 0	
0	 1	 0	 0	 1	 1	
0	 1	 1	 1	 0	 0	
1	 0	 0	 1	 0	 1	
1	 0	 1	 1	 1	 0	
1	 1	 0	 1	 1	 1	
1	 1	 1	 0	 0	 0	

	
	 	

	
From	the	table	we	notice	the	following	patterns.	The	output	O0	is	simply	the	inverse	
of	the	input	I0.	The	output	O1	is	high	whenever	I0	and	I1	differ	so	it	can	be	computed	
using	an	xor	gate	on	those	two	inputs.	Lastly	the	MSB	output	O2	is	high	if	I2	is	0	and	
(I1	and	I0)	are	high	or	if	I2	is	1	and	(I1	and	I0)	is	low.	This	can	be	computed	with	
another	xor	gate	and	an	and	gate.	In	a	way	this	can	be	viewed	as	an	expanded	
version	of	the	simple	bitwise	half	adder	we	studied	in	class	where	the	carry	input	to	
each	bit	position	is	computed	by	explicitly	anding	all	previous	bits.	
	

	
	
	 	

Question	2	(10	pts)	
The	following	piece	of	C	code	was	compiled	with	the	lcc	compiler.	
	
int	fact1	(int	n)	{	
		if	(n	<=	0)	
				return	1;	
		else	
				return	n	*	fact1(n-1);	
}	
	
int	fact2	(int	n)	{	
		int	i,	output	=	1;	
	
		for	(i=2;	i<=n;	++i)	{	
				output	*=	i;	
		}	
	
		return	output;	
}	
	
The	resulting	LC4	assembly	code	fragment	is	shown	below.	Five	of	the	assembly	
instructions	have	been	blacked	out.	Your	job	is	to	figure	out	what	those	5	assembly	
instructions	must	have	been.	
	
;;;;;;;;;;;;;;;;;;;;;;;;;;;;fact1;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	 	 .CODE	
	 	 .FALIGN	
fact1	
	 ;;	prologue	
	 STR	R7,	R6,	#-2	 ;;	save	return	address	
	 STR	R5,	R6,	#-3	 ;;	save	base	pointer	
	 ADD	R6,	R6,	#-3	
	 ADD	R5,	R6,	#0	
	 ADD	R6,	R6,	#-1	 ;;	allocate	stack	space	for	local	variables	
	 ;;	function	body	
	 LDR	R7,	R5,	#3	
	 CONST	R3,	#0	
	 CMP	R7,	R3	
	 BRp	L2_Final_2018_2	
	 CONST	R7,	#1	
	 JMP	L1_Final_2018_2	
L2_Final_2018_2	
	 LDR	R7,	R5,	#3	
	 STR	R7,	R5,	#-1	
	 ADD	R3,	R7,	#-1	
	 ADD	R6,	R6,	#-1	

	 MISSING_INSN_1;	STR	R3,	R6,	#0	;	place	(n-1)	on	stack	
	 MISSING_INSN_2	:	JSR	fact1	;;	call	the	function	
	 LDR	R7,	R6,	#-1	 ;;	grab	return	value	
	 ADD	R6,	R6,	#1	 ;;	free	space	for	arguments	
	 LDR	R3,	R5,	#-1	
	 MUL	R7,	R3,	R7	
L1_Final_2018_2	
	 ;;	epilogue	
	 ADD	R6,	R5,	#0	 ;;	pop	locals	off	stack	
	 ADD	R6,	R6,	#3	 ;;	free	space	for	return	address,	base	pointer,	and	return	
value	
	 STR	R7,	R6,	#-1	 ;;	store	return	value	
	 LDR	R5,	R6,	#-3	 ;;	restore	base	pointer	
	 LDR	R7,	R6,	#-2	 ;;	restore	return	address	
	 RET	
	
;;;;;;;;;;;;;;;;;;;;;;;;;;;;fact2;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	 	 .CODE	
	 	 .FALIGN	
fact2	
	 ;;	prologue	
	 STR	R7,	R6,	#-2	 ;;	save	return	address	
	 STR	R5,	R6,	#-3	 ;;	save	base	pointer	
	 ADD	R6,	R6,	#-3	
	 ADD	R5,	R6,	#0	
	 MISSING_INSN_3	:	ADD	R6,	R6,	#-2	;;	allocate	space	for	2	local	variables	
	 ;;	function	body	
	 CONST	R7,	#1	
	 STR	R7,	R5,	#-2	
	 CONST	R7,	#2	
	 STR	R7,	R5,	#-1	
	 MISSING_INSN_4	:	BRnzp	L8_Final_2018_2	;;	branch	to	test	
L5_Final_2018_2	
	 LDR	R7,	R5,	#-2	
	 LDR	R3,	R5,	#-1	
	 MUL	R7,	R7,	R3	
	 STR	R7,	R5,	#-2	
L6_Final_2018_2	
	 LDR	R7,	R5,	#-1	
	 ADD	R7,	R7,	#1	
	 STR	R7,	R5,	#-1	
L8_Final_2018_2	
	 LDR	R7,	R5,	#-1	
	 LDR	R3,	R5,	#3	
	 CMP	R7,	R3	
	 MISSING_INSN_5	:	BRnz	L5_Final_2018_2	;;	branch	back	up	to	for	body	

	 LDR	R7,	R5,	#-2	
L4_Final_2018_2	
	 ;;	epilogue	
	 ADD	R6,	R5,	#0	 ;;	pop	locals	off	stack	
	 ADD	R6,	R6,	#3	 ;;	free	space	for	return	address,	base	pointer,	and	return	
value	
	 STR	R7,	R6,	#-1	 ;;	store	return	value	
	 LDR	R5,	R6,	#-3	 ;;	restore	base	pointer	
	 LDR	R7,	R6,	#-2	 ;;	restore	return	address	
	 RET	
	
	 	

Question	3	{10	pts}	
	
In	Question	2	the	two	functions,	fact1	and	fact2,	compute	the	same	quantity,	the	
factorial	of	the	input	number.	Which	of	the	two	compiled	function	contains	more	
assembly	instructions?	On	typical	inputs,	which	version	of	the	function	would	run	
faster	(ie	take	fewer	clock	cycles)	on	an	LC4	single	cycle	processor.	Explain	your	
answer	briefly.	
	
Answer:	
	
The	first	part	is	a	simple	counting	exercise,	fact1	compiles	to	27	instructions	while	
fact2	compiles	to	28	instructions	so	fact2	is	longer.	In	practice	however	fact2	would	
run	faster	because	fact1	executes	by	calling	itself	recursively,	each	recursive	call	
involves	a	lot	of	extra	work	setting	up	and	tearing	down	the	stack	just	to	perform	a	
single	subtraction	and	multiplication	while	fact2	uses	only	a	single	function	call	and	
computes	the	product	iteratively.	
	
	
Question	4	{5	pts}	
	
Explain	briefly	why	the	lcc	compiler	inserts	a	.FALIGN	assembly	directive	at	the	
beginning	of	every	compiled	function.	
	
Answer:	
	
The	key	here	is	that	functions	are	called	by	lcc	using	the	JSR	function.	The	JSR	
function	takes	the	last	11	bits	of	the	instruction	left	and	left	shifts	them	by	4	which	is	
equivalent	to	multiplying	by	16.	LC4	does	it	this	way	to	compensate	for	the	fact	that	
it	cannot	store	an	arbitrary	address	in	a	16	bit	instruction	since	some	bits	are	
needed	for	the	opcode	and	other	information.	The	end	result	is	that	JSR	can	only	
jump	to	addresses	that	are	a	multiple	of	16.	The	.FALIGN	directive	tells	the	compiler	
to	start	the	next	code	segment	on	such	an	address	so	that	the	JSR	mechanism	will	
work.	
	
Question	5	{10	pts}	
	
When	the	lcc	compiler	compiles	an	if	statement	like	this:	
	
if	(some	test)	{	
						code	block	inside	if	statement	
}	
	
it	uses	a	BRANCH	statement	to	implement	the	required	control	flow.	What	
constraints,	if	any,	does	that	place	on	the	size	of	the	code	block	inside	the	if	
statement?	
	

Answer:	
	
The	Branch	assignment	uses	the	lower	9	bits	of	the	instruction	sign	extended	to	
compute	the	branch	target.	That	means	that	the	branch	can	reach	any	address	that	
is	within	(PC	+	1)	+	255	to	(PC	+	1)	-256.	This	means	that	the	code	block	that	we	
want	to	jump	over	should	be	no	more	than	255	LC4	instructions.	If	the	clause	you	
want	to	jump	is	longer	than	that	this	branch	compilation	strategy	will	not	work.	
	
	
Question	6	{10	pts}	
	
Which	of	the	following	operations	will	cause	PennSim	to	report	an	error?	

1. Trying	to	execute	code	in	the	OS	code	section	with	privilege	bit	set	to	0	
o Error	:	you	need	OS	privilege	to	perform	OS	code	

2. Trying	to	execute	code	in	the	user	data	section	with	privilege	bit	set	to	1	
o Error	:	in	LC4	you	are	not	allowed	to	execute	data	as	code	

3. Trying	to	store	into	OS	data	section	with	privilege	bit	set	to	1	
o No	Problem	:	The	OS	can	store	into	OS	data	section	

4. Trying	to	execute	code	in	USER	code	section	with	privilege	bit	set	to	1	
o No	Problem	:	The	OS	can	execute	both	OS	and	USER	code	

5. Trying	to	store	into	USER	data	section	with	privilege	bit	set	to	1	
o No	Problem	:	The	OS	can	access	user	data	and	does.	

	 	

Question	7	{15	pts}	
	
Your	cousin,	Crazy	Eddie,	has	decided	to	add	a	new	instruction	to	the	LC4	
instruction	set	with	an	opcode	of	0011.	Here	are	the	settings	for	the	control	signals	
for	this	operation.	
	

	

	

PC
M
ux
.C
TL
	

rs
M
ux
.C
TL
	

rt
M
ux
.C
TL
	

rd
M
ux
.C
TL
	

re
gF
ile
.W
E	

re
gI
np
ut
M
ux
.C
TL
	

N
ZP
.W
E	

DA
TA
.W
E	

Pr
iv
ile
ge
.C
TL
	

AL
UI
np
ut
M
ux
.C
TL
	

AL
U.
CT
L	

FOO	 1	 1	 1	 1	 1	 0	 1	 1	 2	 1	 6	
	
Your	LC4	microprocessor	is	about	to	execute	the	following	16	bit	instruction	
0011011000000001
	
The	table	below	shows	the	state	of	the	LC4	processor	right	before	this	new	
instruction	is	executed.	Your	job	is	to	fill	in	the	table	to	indicate	what	the	state	will	
be	after	the	instruction	is	executed.	All	values	are	given	in	hex,	your	answers	should	
be	as	well.	Please	put	the	answer	in	your	answer	booklet.	
	
	 PC	 PSR	 R0	 R1	 R2	 R3	 R4	 R5	 R6	 R7	
Before	 001F	 0002	 0003	 0011	 0022	 0009	 0017	 0101	 0013	 004F	
After	 ????	 ????	 ????	 ????	 ????	 ????	 ????	 ????	 ????	 ????	
	
Are	there	any	other	relevant	changes	to	the	machine	state?	
	
Explain	how	this	new	instruction	could	be	used	to	accelerate	the	implementation	of	
the	memset()	function	on	an	LC4	system.	That	is	explain	how	would	you	use	this	
new	instruction	to	make	a	faster	implementation	of	memset	than	you	could	before.	
	 	
void	*memset	(void	*	ptr,	int	value,	size_t	num);	
Fill	block	of	memory:	
Sets	the	first	num	slots	of	the	block	of	memory	pointed	by	ptr	to	the	specified	value.	
	
Answer:		
	
The	control	settings	will	cause	the	following	things	to	happen.	The	PC	will	be	set	to	
PC+1	on	the	next	instruction.	The	value	in	R7	will	be	added	to	the	sign	extended	
immediate	5	field	that	value	will	be	written	back	into	R7	and	the	NZP	bits	will	be	

adjusted	based	on	the	sign	of	that	result.	Furthermore	the	computed	value	will	be	
passed	as	an	address	to	the	Data	Memory	and	the	and	that	value	will	be	passes	as	an	
address	to	the	Data	memory	and	the	RT	value	will	be	written	into	memory	at	that	
location.	The	RT	value	will	be	pulled	from	bits	11-9	in	the	instruction.	
	
The	instruction	that	we	will	execute	has	an	opcode	of	0011,	an	rt	field	of	3	and	an	
immediate	field	value	of	+1.	The	result	of	executing	this	function	will	be.	
	
	
	 PC	 PSR	 R0	 R1	 R2	 R3	 R4	 R5	 R6	 R7	
Before	 001F	 0002	 0003	 0011	 0022	 0009	 0017	 0101	 0013	 004F	
After	 0020	 0001	 0003	 0011	 0022	 0009	 0017	 0101	 0013	 0050	
	
	
Furthermore,	the	value	in	R3	which	is	9	will	be	written	into	the	data	memory	at	
address	x0050.	Note	the	PSR	is	updated	to	0001	since	the	result	in	R7	is	positive.	
	
The	interesting	thing	about	this	new	instruction	is	that	it	uses	R7	as	a	base	address	
just	like	a	STR	instruction	but	it	updates	that	address	by	the	immediate	field	as	it	
executes.	This	could	be	useful	if	you	were	implementing	a	loop	that	filled	in	a	
section	of	memory	as	in	the	memset	operation.	Instead	of	having	one	instruction	to	
store	the	value	and	another	to	update	the	base	pointer	you	could	fuse	this	into	a	
single	instruction	that	did	both	jobs.	This	should	speed	up	the	operation.	Here	is	the	
idea	in	pseudo	code	
	
Initialize	R7	to	ptr	
Initialize	counter	to	num	
While	(counter--)	{	
				Use	Foo	to	write	value	into	memory	and	update	R7	to	point	to	next	entry	
}	
	 	

Question	8	{10	pts}	
	
You	are	tasked	with	writing	a	program	that	will	maintain	a	list	of	integers	sorted	in	
ascending	order.		We	are	providing	some	C	code	that	does	this	but	we	have	blanked	
out	some	of	the	lines.	Your	job	is	to	tell	us	what	these	missing	lines	should	be.	HINT:	
The	missing	lines	are	all	assignment	statements.	
	
#include	<stdio.h>	
#include	<stdlib.h>	
	
typedef	struct	list_elt_tag	{	
		int	elt;	
		struct	list_elt_tag	*next;	
}	list_elt;	
	
list_elt	*LIST	=	NULL;	//	Initialize	the	list	to	empty	
	
//	Insert	the	number	n	on	the	list	sorted	in	ascending	order	
void	insert_entry_sorted	(int	n)	{	
		list_elt	*entry,	*new_entry;	
	
		MISSING_LINE_1;	new_entry	=	malloc(sizeof(list_elt));	//	allocate	space	
	
		if	(new_entry	==	NULL)	exit(2);	
	
		new_entry->elt	=	n;	
	
		if	((LIST	==	NULL)	||	(LIST->elt	>=	n))	{	
				MISSING_LINE_2;	new_entry->next	=	LIST;	
				MISSING_LINE_3;	LIST	=	new_entry;	
		}	else	{	
				entry	=	LIST;	
	
				while	((entry->next)	&&	(((entry->next)->elt)	<	n))	{	
						MISSING_LINE_4;	entry	=	entry->next;		//	get	the	next	entry	in	the	list	
				}	
					
					MISSING_LINE_5;	new_entry->next	=	entry->next;	
					MISSING_LINE_6;	entry->next	=	new_entry;	
		}	
}	
	
Note	that	for	lines	2	and	3	and	5	and	6	the	order	of	operations	is	critically	important.	
If	you	do	it	in	the	wrong	order	you	end	up	with	memory	leaks	and	segmentation	
faults.	

