
CIS 240 Fall 2019: Midterm
Oct 23, 2019

Name :

Please write your name on the exam and the exam booklet and turn in both. You can
answer the questions on this exam sheet or in the exam booklet. Please number the
questions you are addressing clearly in the exam booklet.

Question 1 {25 pts}

Your job is to design a circuit that will take as input a 3-bit value, I and produce a 2-bit
output O, which indicates the number of 1 bits in the input. For example, if I = 101 then
O should be 10, if I = 010 then O = 01. In your diagram I2, I1 and I0 should indicate the 3
bits of the input and O1 and O0 the two bits of the output where O1 is the MSB.
Remember that we cannot grade what we cannot read so please make your diagrams as
neat and clear as possible.

a) {5 pts} First provide a truth table indicating what the output O should be for every
possible value of the input I.

b) {5 pts} Design 2 PLA circuits to produce the two output bits O1 and O0.
c) {10 pts} Design 2 CMOS circuits to produce the two output bits O1 and O0. You

can assume that you have access to negated versions of all of the input bits. Your
solution should consist of one CMOS network for each output bit. It should not
involve cascading multiple CMOS circuits.

d) {5 pts} If the PLA circuit you provide for part b is ultimately implemented on the
same kind of CMOS technology that you would use for your answer to part c
which implementation do you think would have the lower overall delay? Explain
your answer.

Answer

Part a

I2 I1 I0 O1 O0
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Part b

Part c

Part d

The CMOS circuits from part c are implemented as single gates where the PLAs involve
multiple levels of logic – a layer of and gates and an or gate. We would expect that this
organization would add delay so the circuit for part c would have lower overall delay.

Question 2 {15 pts}

a) List every LC4 instruction that requires the Privilege.CTL signal to be set to 1
a. TRAP – the only instruction that elevates the privilege pit to 1

b) List every LC4 instruction that requires the ALU.CTL signal to be set to 5
a. ADD Immediate

c) List every LC4 instruction that requires the ALU.CTL signal to be set to 6
a. LDR and STR

d) List every LC4 instruction that requires the DATA.WE signal to be set to 1
a. STR

e) List every LC4 instruction that requires the regInputMux.CTL signal to be set to 2
a. JSR, JSRR and TRAP all involve writing PC+1 into the register file and

hence require this setting.

Question 3 {20 pts}

The table below shows the contents of a region of User Code memory in PennSim. First
convert the machine instructions you see here to an equivalent sequence of assembly
instructions so you can read them. Note the assembly program on this answer sheet or in
your test booklet. After you have done this, show what would happen when the program
is executed by filling in the second table which shows the state of all of the registers at
the start of each instruction cycle. Fill in the NZP entries with N for negative, Z for zero
and P for positive. You must fill in the PC and NZP for every clock cycle, for the register
values R0-R7 you only need to fill in the values of the registers that have changed from
the previous cycle, if any. You should enter all values as decimal numbers, not hex.

Hint: start by looking at the four bit opcode – be careful how you break up the 16 bit
fields, one bit can make a big difference.

Address Machine Instruction Assembly Instruction
0 0001010000001001 MUL R2, R0, R1
1 0000100000000010 BRn #2
2 0000001000000010 BRp #2
3 0000111111111111 BRnzp #-1
4 1001000000000100 CONST R0, #4
5 0001001001111111 ADD R1, R1, #-1
6 1100111111111001 JMP #-7

Instruction
Cycle

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PC 0 1 4 5 6 0 1 2 5 6 0 1 2 3 3
NZP P N N P P P P P P Z Z Z Z Z Z
R0 -3 4
R1 2 1 0
R2 0 -6 4 0
R3 0
R4 0
R5 0
R6 0
R7 0

Question 4 {15 pts}

Your job in this question is to design part of the Decoder circuit for our Single Cycle LC4
implementation.

a) {10 pts} Produce a PLA circuit that takes as input the relevant bits from the
current instruction and produces as output the regFile.WE signal.

b) {5 pts} Produce a second PLA circuit that generates the NZP.WE signal. Hint you
can use the regFile.WE signal as an input to this second circuit.

Please use the convention I15, I14, … ,I0 to refer to bits in the instruction word where I15 is
the MSB and I0 the LSB. Please note that we are asking for a PLA implementation
specifically, alternative implementations will receive less points.

Answer:

Let’s consider all of the instructions that write to the register file and their associated
opcodes.

0001: ADD, SUB, MUL, DIV
1010: MOD, SLL, SRA, SRL
0101: AND, NOT, OR, XOR
0110: LDR
1001: CONST
1101: HICONST
0100: JSR and JSRR write to R7
1111: TRAP writes to R7

This leads to a PLA with 8 AND gates as shown below

Note that there are 3 opcodes that are not currently used in LC4 but available for future
expansion. Note that it is entirely possible that the processor could encounter these
unused opcodes during operation, and it would not be safe for the processor to write to
the register file if this happened – solutions that did generate spurious write signals in
these cases lost points.

To generate NZP.WE we recall that all operations that write to the register file write to
NZP as do all the CMP instructions. So we just need to combine the regFile.WE signal
with another term that checks for the CMP opcode, 0010.

Question 5 {5 pts}

One odd feature of the LC4 instruction set is that the MOD operation does not have the
same opcode as the other arithmetic operations that it is most closely related to namely:
ADD, MUL, SUB, DIV and ADD Immediate. Explain briefly why we cannot give MOD
the same opcode as these other operations given the way that these other instructions are
currently encoded.

Answer:

If we consider the way that the arithmetic instructions ADD, SUB, DIV and ADD
Immediate are coded we notice that they all share the same opcode, 0001, and that they
are distinguished by their 3 bit subopcode in bits 5:3. Now it would appear that with 3
bits you could support 8 different instructions which would allow room for MOD but the
way that they are allocated if the first bit of the subopcode is 1 that signals an Immediate
add and the remaining 5 bits in the instruction are viewed as part of the immediate
operand. That means that we really only have 2 bits which can be used to code for
different instructions and these are used to code the 4 fundamental operations, ADD,
SUB, MUL and DIV, so there is no space to add the MOD instruction in this instruction
coding.

