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Logistics Part 1

❖ HW00 Binary Quiz: This Friday 9/16 @ 11:59 pm

▪ Quiz On Canvas

▪ Should have everything you need

❖ Recitations Starting this week!

▪ Optional, but can be very useful

▪ Increasingly useful as the semester goes on

▪ More info on Ed
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Logistics Part 2

❖ HW01 bits.c: to be released sometime this week

▪ Will require VM setup (also to be released soon)

▪ Has you “program” in C

▪ Today’s lecture is very relevant for it

❖ Starting to count PollEverywhere

❖ More OH posted on the course website

▪ (including mine)
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Lecture Outline

❖ Floats Continued

❖ Logical Operators

▪ Shifting

❖ Boolean Algebra
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Lecture 2 Take-aways

❖ We can represent Negative integers with 2C

❖ We can represent fractional numbers with Floats

❖ C/Java data types like int and float are limited by their 
number of bits

▪ A data type of N bits has 2N unique bit patterns

▪ More on this later in lecture
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Binary Scientific Notation

❖ Scientific notation in Binary:

▪ Sign: whether we are negative or positive

▪ Ones place: Always starts with a non-zero ‘bit’

• (unless overall expression is 0)

▪ Mantissa: Everything after the binary point

▪ Exponent: We are in base 2, so we raise 2 to this value

❖ We can represent a scientific notation binary number with
only the Sign, Mantissa, and Exponent

8

-1.1001 * 24

A non-zero bit 

must be 1!

This 1 can be implicit
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IEEE Floating Point Notation

❖ We can represent a scientific notation binary number with
only the Sign, Mantissa, and Exponent

❖ Allocate 32 bits, with

▪ First bit goes to the Sign (1 for negative, 0 for non-negative)

▪ The next 8 bits go to the Exponent + 127 (as an unsigned 8-bit int)

• This means the exponent must fall between -127 and 128

▪ The rest (23 bits) goes to the Mantissa

9

exponent + 127
sign

mantissa
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Special Numbers

❖ There are some special values to IEEE floating point 
representation

▪ There are also “Subnormal” values, but we won’t talk about that

10

Value Sign Exponent Mantissa

0 0 All 0’s All 0’s

-0 1 All 0’s All 0’s

NaN 1 or 0 All 1’s Not 0

∞ 0 All 1’s All 0’s

-∞ 1 All 1’s All 0’s

All 1’s mean

0b11111111 or 0xFF

Not a Number ->

<- e.g. 0b00000…

At least one 

of the 23 

bits in 

mantissa 

must be a 1
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Floating Point: Finite Size Issues

❖ Float’s are only 32 bits, and computers are finite

▪ there is a limit to representable numbers

❖ DEMO

▪ 1.1 + 2.2 != 3.3 ? (float_add.c)

▪ 240000001 != 240000001 ? (int_float.c)

❖ “Underflow” can also be an issue

▪ When a result is too small in magnitude to be representable

▪ (Common issue with Bayesian computations) 
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Takeaway: Finite Resources

❖ Computers are physical machines, and limited by being 
physical machines

▪ Many numbers are stored as approximations

▪ Overflow or underflow can occur

❖ These errors can be catastrophic:

Ariane flight V88 Boeing 787
12
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Data Representation Work Arounds

❖ There are “Workarounds” to data types with limited bits:

▪ Choose data types with more bits (C examples)

• int128_t (128-bit integer)

• double (64-bit floating-point number)

▪ Use custom data types that are only bound by memory size 

• Python has integer and decimal

• Java has BigInteger and BigDecimal

▪ Rigorous testing of software ☺
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Lecture Outline

❖ Floats Continued

❖ Logical Operators

▪ Shifting

❖ Boolean Algebra
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Logical Operations on bool

❖ Operations on Boolean (True/False) values

▪ Likely familiar with most of these from Java

▪ AND, OR, XOR, NOT

15

A B A AND B A OR B A XOR B

False False False False False

False True False True True

True False False True True

True True True True False

XOR == eXclusive OR

A NOT A

False True

True False
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Bits as "bool"

❖ A Boolean value can be represented by a single bit

▪ 1 is true, 0 is false

▪ We can represent our logical operations as operations on bits

16

A B A AND B A OR B A XOR B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

A NOT A

0 1

1 0
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Bitwise Operators

❖ An individual bit is not a datatype, data types are group of 
bits. Instead, these operations work on all bits in a type

▪ Each operator acts on each bit position independently

▪ Consider the following examples on an imaginary 2-bit type

▪ (Parenthesis in table contain the C syntax)

17

A B A AND B (A & B) A OR B (A | B) A XOR B (A ^ B)

00 00 00 00 00

01 10 00 11 11

10 01 00 11 11

11 10 10 11 01

…. … … … …

11 11 11 11 00

A NOT A (~A)

00 11

01 10

10 01

11 00

Useful for HW01
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Bitwise Operators in C

❖ These bitwise operators exist in C

❖ Table below contains descriptions and example of syntax
▪ Assume A and B are of type int

18

Logical Name C Syntax Example

AND & A & B

OR | A | B

XOR ^ A ^ B

NOT ~ ~A

Useful for HW01
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Shifting Bits

❖ Two more bitwise operators, left shift and right shift

▪ Still confined to the size of the data type, bits can be shifted off on 
the left or right side.

▪ During left shift, always fill in with 0’s from the right

▪ During a right shift: (More on these in a second)

• Either fill with 0’s from left (Logical)

• Duplicate the MSB (Arithmetic)

19

Useful for HW01

Description C Syntax Bit pattern

Original x -- 0b01101011

X left shift by 1 x << 1 0b11010110

X right shift by 1 x >> 1 0b00110101

X left shift by 2 x << 2 0b10101100
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Arithmetic vs Logical Shift

❖ In C
▪ The syntax for both shifts is the same (x >> 1)

▪ the shift type is automatically chosen based on the data type

• Unsigned types like unsigned int for logical right shift 

• Signed types like int or signed int for arithmetic right shift 

20

Useful for HW01

Description Bit pattern

Original x 0b10111011

X >> 1 - X right shift by 1 (logical) 0b01011101

X >> 1 - X right shift by 1 (arithmetic) 0b11011101
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Shifts & Powers of 2

❖ When dealing with binary , Powers of 2 are everywhere

❖ Note that shifting to the left by one is the same as 
multiplying by 2

▪ This extends to x << n being the same as x * 2n

❖ Similar applies to right shifts for division

▪ This extends to x >> n usually being the same as x / 2n
21

Before Operation After

int x = 2; (0b0010) x = x << 1; x == 4; (0b0100)

Before Operation After

int x = -4;

(0b1100) 

x = x >> 1;

(arithmetic)

x == -2;

(0b1110)

unsigned int x = 12;

(0b1100)

x = x >> 1;

(logical)

x == 6;

(0b0110)

Assume ints are 4 bits for examples
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Getting & Clearing Bits

❖ Can use a combination of shifts, ANDs and ORs to 
manipulate bits

❖ Say I wanted to set get the 5th bit from an 8-bit integer 'a'
▪ Answer (a >> 5) & 0x01

▪ Walkthrough:

• a = 0bYYXYYYYY  // X = bit we want

// Y = bit we don’t want

• (a >> 5) = 0b*****YYX  // * = bit padded from

//     shift

• (a >> 5) & 0x01 = 0b*****YYX

&0b00000001

= 0b0000000X

22

Useful for HW01

0 indexed from the right

At a bit level:

X & 0 = 0

x & 1 = X
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One way to read() 𝑛 bytes

❖ Which of the following sets the MSB of any unsigned 8-bit 
int 'a' to 0, and leaves the rest of the bits the same?

23

pollev.com/tqm

A. ((1 << 7) & a) ^ a

B.   ~(1<<7) & a

C. ((a >> 7) & 0) << 7          

D. I’m not sure

a =      0bXYYYYYYY

result = 0b0YYYYYYY



CIS 2400, Fall 2022L03:  Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ Which of the following sets the MSB of any unsigned 8-bit 
int 'a' to 0, and leaves the rest of the bits the same?

24

pollev.com/tqm

A. ((1 << 7) & a) ^ a

B.   ~(1<<7) & a

C. ((a >> 7) & 0) << 7          

D. I’m not sure

a =      0bXYYYYYYY

result = 0b0YYYYYYY

a & 0b01111111 = result

a & ~(0b10000000) = result

a & ~(1 << 7) = result
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Lecture Outline

❖ Floats Continued

❖ Logical Operators

▪ Shifting

❖ Boolean Algebra

25
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Disclaimer

❖ We just talked about bit-wise logical operators, and I will 
be using bit-wise operator syntax for the next section

▪ 1 is still equal to TRUE

▪ 0 is still equal to FALSE

❖ It may be easier to think of this next section as applying 
specifically to Boolean data types

▪ (Though this can also be applied to bit-wise operators)

• Treat True as the "all 1" bit pattern

• Treat False as the "all 0" bit pattern

26
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Boolean rules

❖ Identity

▪ A & 1 = A

▪ A & 0 = 0

▪ A | 1 = 1

▪ A | 0 = A

▪ ~~A  = NOT NOT A = A

❖ Associative

▪ A & (B & C) = (A & B) & C

▪ A | (B | C) = (A | B) | C

❖ Distributive

▪ A & (B | C) = (A & B) | (A & C)

▪ A | (B & C) = (A | B) & (A | C)

27

❖ More Identity

▪ A & A = A

▪ A | A = A

▪ A & ~A = 0

▪ A | ~A = 1

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

More on De Morgan’s later

Useful for HW01
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Truth Tables

❖ A table you can write for an expression to represent all 
possible combinations of input and output for an 
expression

❖ Truth Table for (A & (A & ~B)):

28

A (input) B (input) Output

0 0 0

0 1 0

1 0 1

1 1 0
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Boolean Simplification

❖ We can apply rules to simplify Boolean patterns

❖ Consider the previous example

▪ (A & (A & ~B))

▪ ((A & A) & ~B) // By associative property

▪ (A & ~B) // By distributive Property

❖ Consider:

▪ (A | B) & (A | ~B)

29
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Boolean rules

❖ Identity

▪ A & 1 = A

▪ A & 0 = 0

▪ A | 1 = 1

▪ A | 0 = A

▪ ~~A  = NOT NOT A = A

❖ Associative

▪ A & (B & C) = (A & B) & C

▪ A | (B | C) = (A | B) | C

❖ Distributive

▪ A & (B | C) = (A & B) | (A & C)

▪ A | (B & C) = (A | B) & (A | C)

30

❖ More Identity

▪ A & A = A

▪ A | A = A

▪ A & ~A = 0

▪ A | ~A = 1

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

More on De Morgan’s soon

Simplify:
(A | B) & (A | ~B)
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Boolean Simplification

❖ We can apply rules to simplify Boolean patterns

❖ Consider the previous example

▪ (A & (A & ~B))

▪ ((A & A) & ~B) // By associative property

▪ (A & ~B) // By distributive Property

❖ Consider:

▪ (A | B) & (A | ~B)

▪ A | (B & ~B) // by distributive property

▪ A | 0 // by identity property

▪ A // by identity property

31

Simplification can have

Multiple correct simplifications
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De Morgan’s Law

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

❖ Provides a way to convert between AND to OR

▪ (with some help from NOT)

❖ Truth Tables for proof:

32

A B ~(A | B) ~A & ~B ~(A & B) ~A | ~B

0 0 1 1 1 1

0 1 0 0 1 1

1 0 0 0 1 1

1 1 0 0 0 0
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De Morgan’s Law: Demo

❖ Write a statement equivalent to OR, but without using OR

▪ A | B

▪ ~~(A | B) // identity property

▪ ~(~A  & ~B) // De Morgan’s Law

❖ This still works for multi-bit data and bitwise operations

33
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Boolean rules

❖ Identity

▪ A & 1 = A

▪ A & 0 = 0

▪ A | 1 = 1

▪ A | 0 = A

▪ ~~A  = NOT NOT A = A

❖ Associative

▪ A & (B & C) = (A & B) & C

▪ A | (B | C) = (A | B) | C

❖ Distributive

▪ A & (B | C) = (A & B) | (A & C)

▪ A | (B & C) = (A | B) & (A | C)

34

❖ More Identity

▪ A & A = A

▪ A | A = A

▪ A & ~A = 0

▪ A | ~A = 1

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

Useful for HW01

Bit-wise operations just follow these N times for N bits

These apply to multi-bit operations as well!
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Next Lecture

❖ Next Time: We start hardware!

▪ Start with Transistors & circuits

▪ Booleans & bits will still be necessary

• Be sure to be familiar with C bitwise ops, Boolean logic & De Morgan’s 
Law

❖ HW00 Due this Friday!!!!

❖ HW01 & VM Setup to come out soon
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