
CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Rounding, Logical Ops
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

2

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Logistics Part 1

❖ HW00 Binary Quiz: This Friday 9/16 @ 11:59 pm

▪ Quiz On Canvas

▪ Should have everything you need

❖ Recitations Starting this week!

▪ Optional, but can be very useful

▪ Increasingly useful as the semester goes on

▪ More info on Ed

3

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Logistics Part 2

❖ HW01 bits.c: to be released sometime this week

▪ Will require VM setup (also to be released soon)

▪ Has you “program” in C

▪ Today’s lecture is very relevant for it

❖ Starting to count PollEverywhere

❖ More OH posted on the course website

▪ (including mine)

4

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

5

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Lecture Outline

❖ Floats Continued

❖ Logical Operators

▪ Shifting

❖ Boolean Algebra

6

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Lecture 2 Take-aways

❖ We can represent Negative integers with 2C

❖ We can represent fractional numbers with Floats

❖ C/Java data types like int and float are limited by their
number of bits

▪ A data type of N bits has 2N unique bit patterns

▪ More on this later in lecture

7

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Binary Scientific Notation

❖ Scientific notation in Binary:

▪ Sign: whether we are negative or positive

▪ Ones place: Always starts with a non-zero ‘bit’

• (unless overall expression is 0)

▪ Mantissa: Everything after the binary point

▪ Exponent: We are in base 2, so we raise 2 to this value

❖ We can represent a scientific notation binary number with
only the Sign, Mantissa, and Exponent

8

-1.1001 * 24

A non-zero bit

must be 1!

This 1 can be implicit

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

IEEE Floating Point Notation

❖ We can represent a scientific notation binary number with
only the Sign, Mantissa, and Exponent

❖ Allocate 32 bits, with

▪ First bit goes to the Sign (1 for negative, 0 for non-negative)

▪ The next 8 bits go to the Exponent + 127 (as an unsigned 8-bit int)

• This means the exponent must fall between -127 and 128

▪ The rest (23 bits) goes to the Mantissa

9

exponent + 127
sign

mantissa

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Special Numbers

❖ There are some special values to IEEE floating point
representation

▪ There are also “Subnormal” values, but we won’t talk about that

10

Value Sign Exponent Mantissa

0 0 All 0’s All 0’s

-0 1 All 0’s All 0’s

NaN 1 or 0 All 1’s Not 0

∞ 0 All 1’s All 0’s

-∞ 1 All 1’s All 0’s

All 1’s mean

0b11111111 or 0xFF

Not a Number ->

<- e.g. 0b00000…

At least one

of the 23

bits in

mantissa

must be a 1

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Floating Point: Finite Size Issues

❖ Float’s are only 32 bits, and computers are finite

▪ there is a limit to representable numbers

❖ DEMO

▪ 1.1 + 2.2 != 3.3 ? (float_add.c)

▪ 240000001 != 240000001 ? (int_float.c)

❖ “Underflow” can also be an issue

▪ When a result is too small in magnitude to be representable

▪ (Common issue with Bayesian computations)

11

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Takeaway: Finite Resources

❖ Computers are physical machines, and limited by being
physical machines

▪ Many numbers are stored as approximations

▪ Overflow or underflow can occur

❖ These errors can be catastrophic:

Ariane flight V88 Boeing 787
12

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Data Representation Work Arounds

❖ There are “Workarounds” to data types with limited bits:

▪ Choose data types with more bits (C examples)

• int128_t (128-bit integer)

• double (64-bit floating-point number)

▪ Use custom data types that are only bound by memory size

• Python has integer and decimal

• Java has BigInteger and BigDecimal

▪ Rigorous testing of software ☺

13

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Lecture Outline

❖ Floats Continued

❖ Logical Operators

▪ Shifting

❖ Boolean Algebra

14

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Logical Operations on bool

❖ Operations on Boolean (True/False) values

▪ Likely familiar with most of these from Java

▪ AND, OR, XOR, NOT

15

A B A AND B A OR B A XOR B

False False False False False

False True False True True

True False False True True

True True True True False

XOR == eXclusive OR

A NOT A

False True

True False

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Bits as "bool"

❖ A Boolean value can be represented by a single bit

▪ 1 is true, 0 is false

▪ We can represent our logical operations as operations on bits

16

A B A AND B A OR B A XOR B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

A NOT A

0 1

1 0

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Bitwise Operators

❖ An individual bit is not a datatype, data types are group of
bits. Instead, these operations work on all bits in a type

▪ Each operator acts on each bit position independently

▪ Consider the following examples on an imaginary 2-bit type

▪ (Parenthesis in table contain the C syntax)

17

A B A AND B (A & B) A OR B (A | B) A XOR B (A ^ B)

00 00 00 00 00

01 10 00 11 11

10 01 00 11 11

11 10 10 11 01

…. … … … …

11 11 11 11 00

A NOT A (~A)

00 11

01 10

10 01

11 00

Useful for HW01

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Bitwise Operators in C

❖ These bitwise operators exist in C

❖ Table below contains descriptions and example of syntax
▪ Assume A and B are of type int

18

Logical Name C Syntax Example

AND & A & B

OR | A | B

XOR ^ A ^ B

NOT ~ ~A

Useful for HW01

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Shifting Bits

❖ Two more bitwise operators, left shift and right shift

▪ Still confined to the size of the data type, bits can be shifted off on
the left or right side.

▪ During left shift, always fill in with 0’s from the right

▪ During a right shift: (More on these in a second)

• Either fill with 0’s from left (Logical)

• Duplicate the MSB (Arithmetic)

19

Useful for HW01

Description C Syntax Bit pattern

Original x -- 0b01101011

X left shift by 1 x << 1 0b11010110

X right shift by 1 x >> 1 0b00110101

X left shift by 2 x << 2 0b10101100

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Arithmetic vs Logical Shift

❖ In C
▪ The syntax for both shifts is the same (x >> 1)

▪ the shift type is automatically chosen based on the data type

• Unsigned types like unsigned int for logical right shift

• Signed types like int or signed int for arithmetic right shift

20

Useful for HW01

Description Bit pattern

Original x 0b10111011

X >> 1 - X right shift by 1 (logical) 0b01011101

X >> 1 - X right shift by 1 (arithmetic) 0b11011101

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Shifts & Powers of 2

❖ When dealing with binary , Powers of 2 are everywhere

❖ Note that shifting to the left by one is the same as
multiplying by 2

▪ This extends to x << n being the same as x * 2n

❖ Similar applies to right shifts for division

▪ This extends to x >> n usually being the same as x / 2n
21

Before Operation After

int x = 2; (0b0010) x = x << 1; x == 4; (0b0100)

Before Operation After

int x = -4;

(0b1100)

x = x >> 1;

(arithmetic)

x == -2;

(0b1110)

unsigned int x = 12;

(0b1100)

x = x >> 1;

(logical)

x == 6;

(0b0110)

Assume ints are 4 bits for examples

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Getting & Clearing Bits

❖ Can use a combination of shifts, ANDs and ORs to
manipulate bits

❖ Say I wanted to set get the 5th bit from an 8-bit integer 'a'
▪ Answer (a >> 5) & 0x01

▪ Walkthrough:

• a = 0bYYXYYYYY // X = bit we want

// Y = bit we don’t want

• (a >> 5) = 0b*****YYX // * = bit padded from

// shift

• (a >> 5) & 0x01 = 0b*****YYX

&0b00000001

= 0b0000000X

22

Useful for HW01

0 indexed from the right

At a bit level:

X & 0 = 0

x & 1 = X

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ Which of the following sets the MSB of any unsigned 8-bit
int 'a' to 0, and leaves the rest of the bits the same?

23

pollev.com/tqm

A. ((1 << 7) & a) ^ a

B. ~(1<<7) & a

C. ((a >> 7) & 0) << 7

D. I’m not sure

a = 0bXYYYYYYY

result = 0b0YYYYYYY

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

One way to read() 𝑛 bytes

❖ Which of the following sets the MSB of any unsigned 8-bit
int 'a' to 0, and leaves the rest of the bits the same?

24

pollev.com/tqm

A. ((1 << 7) & a) ^ a

B. ~(1<<7) & a

C. ((a >> 7) & 0) << 7

D. I’m not sure

a = 0bXYYYYYYY

result = 0b0YYYYYYY

a & 0b01111111 = result

a & ~(0b10000000) = result

a & ~(1 << 7) = result

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Lecture Outline

❖ Floats Continued

❖ Logical Operators

▪ Shifting

❖ Boolean Algebra

25

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Disclaimer

❖ We just talked about bit-wise logical operators, and I will
be using bit-wise operator syntax for the next section

▪ 1 is still equal to TRUE

▪ 0 is still equal to FALSE

❖ It may be easier to think of this next section as applying
specifically to Boolean data types

▪ (Though this can also be applied to bit-wise operators)

• Treat True as the "all 1" bit pattern

• Treat False as the "all 0" bit pattern

26

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Boolean rules

❖ Identity

▪ A & 1 = A

▪ A & 0 = 0

▪ A | 1 = 1

▪ A | 0 = A

▪ ~~A = NOT NOT A = A

❖ Associative

▪ A & (B & C) = (A & B) & C

▪ A | (B | C) = (A | B) | C

❖ Distributive

▪ A & (B | C) = (A & B) | (A & C)

▪ A | (B & C) = (A | B) & (A | C)

27

❖ More Identity

▪ A & A = A

▪ A | A = A

▪ A & ~A = 0

▪ A | ~A = 1

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

More on De Morgan’s later

Useful for HW01

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Truth Tables

❖ A table you can write for an expression to represent all
possible combinations of input and output for an
expression

❖ Truth Table for (A & (A & ~B)):

28

A (input) B (input) Output

0 0 0

0 1 0

1 0 1

1 1 0

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Boolean Simplification

❖ We can apply rules to simplify Boolean patterns

❖ Consider the previous example

▪ (A & (A & ~B))

▪ ((A & A) & ~B) // By associative property

▪ (A & ~B) // By distributive Property

❖ Consider:

▪ (A | B) & (A | ~B)

29

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Boolean rules

❖ Identity

▪ A & 1 = A

▪ A & 0 = 0

▪ A | 1 = 1

▪ A | 0 = A

▪ ~~A = NOT NOT A = A

❖ Associative

▪ A & (B & C) = (A & B) & C

▪ A | (B | C) = (A | B) | C

❖ Distributive

▪ A & (B | C) = (A & B) | (A & C)

▪ A | (B & C) = (A | B) & (A | C)

30

❖ More Identity

▪ A & A = A

▪ A | A = A

▪ A & ~A = 0

▪ A | ~A = 1

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

More on De Morgan’s soon

Simplify:
(A | B) & (A | ~B)

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Boolean Simplification

❖ We can apply rules to simplify Boolean patterns

❖ Consider the previous example

▪ (A & (A & ~B))

▪ ((A & A) & ~B) // By associative property

▪ (A & ~B) // By distributive Property

❖ Consider:

▪ (A | B) & (A | ~B)

▪ A | (B & ~B) // by distributive property

▪ A | 0 // by identity property

▪ A // by identity property

31

Simplification can have

Multiple correct simplifications

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

De Morgan’s Law

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

❖ Provides a way to convert between AND to OR

▪ (with some help from NOT)

❖ Truth Tables for proof:

32

A B ~(A | B) ~A & ~B ~(A & B) ~A | ~B

0 0 1 1 1 1

0 1 0 0 1 1

1 0 0 0 1 1

1 1 0 0 0 0

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

De Morgan’s Law: Demo

❖ Write a statement equivalent to OR, but without using OR

▪ A | B

▪ ~~(A | B) // identity property

▪ ~(~A & ~B) // De Morgan’s Law

❖ This still works for multi-bit data and bitwise operations

33

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Boolean rules

❖ Identity

▪ A & 1 = A

▪ A & 0 = 0

▪ A | 1 = 1

▪ A | 0 = A

▪ ~~A = NOT NOT A = A

❖ Associative

▪ A & (B & C) = (A & B) & C

▪ A | (B | C) = (A | B) | C

❖ Distributive

▪ A & (B | C) = (A & B) | (A & C)

▪ A | (B & C) = (A | B) & (A | C)

34

❖ More Identity

▪ A & A = A

▪ A | A = A

▪ A & ~A = 0

▪ A | ~A = 1

❖ De Morgan’s Law

▪ ~(A & B) = ~A | ~B

▪ ~(A | B) = ~A & ~B

Useful for HW01

Bit-wise operations just follow these N times for N bits

These apply to multi-bit operations as well!

CIS 2400, Fall 2022L03: Floats, Logical Ops, Boolean AlgebraUniversity of Pennsylvania

Next Lecture

❖ Next Time: We start hardware!

▪ Start with Transistors & circuits

▪ Booleans & bits will still be necessary

• Be sure to be familiar with C bitwise ops, Boolean logic & De Morgan’s
Law

❖ HW00 Due this Friday!!!!

❖ HW01 & VM Setup to come out soon

35

