
CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

LC4 Instruction Overview
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

2

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Logistics

❖ HW03 Sequential Logic: This Friday 10/7 @ 11:59 pm

▪ Written Homework, submitted to gradescope

▪ NO EXTENSIONS OVER 72 HOURS

▪ Should have everything you need

▪ Practice in Recitations this week

❖ HW04 LC4 Programming: to be released this week

▪ Programming assignment

▪ May not have everything you need until Monday’s lecture

3

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Lecture Outline

❖ LC4 Review & shift instructions

❖ Instructions as bits & HICONST

❖ Program Counter, JMP, BR, JSR

❖ LC4 misc. syntax

4

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

In-Person Lecture Policies

❖ I ask that you wear a mask in lecture

❖ If you are using your electronics (outside of polls), please
sit in the back

▪ Having electronics out make it a lot easier to distracted by
random notifications

▪ Easy for people sitting nearby & behind you to get distracted by
your distractions

5

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

LC4 ASM vs C (Learning Example)

❖ Instead of operating on variables, we are operating on
processor registers.

▪ We have 8 of these: (R0, R1, R2 … R7)

▪ (Program variables aren’t just processor registers in reality,
but we will treat them like that for now)

❖ Example comparing C cod to ASM:

6

int R0 = 0;

int R1 = 12;

R0 = (R1 + 5)

R0 = R0 * R1;

CONST R0, #0

CONST R1, #12

ADD R0, R1, #5

MUL R0, R1, R0

C code LC4

C doesn’t translate into assembly this way; this is just a comparison for learning

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

LC4 “Cheat Sheet”

❖ Contains every LC4 instruction, its behaviour, and other
information we will discuss later

▪ On the website under “references”

▪ HIGHLY recommend you print a copy

▪ Will be provided on exams if needed

7

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

All Arithmetic Instructions in LC4

❖ All arithmetic operations in LC4:

▪ Note the order of registers matter for some operations

• (DIV, SUB, MOD)

▪ Note that DIV does integer division

8

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Bitwise Instructions in LC4

❖ Bitwise operations in LC4:

▪ Very similar layout to arithmetic operations, just performing
bitwise operations instead

▪ Shifting also exists and will be discussed later

9

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

CMOS Examples #1

10

❖ What is the final value of R0 after the following instructions
are executed:

pollev.com/tqm

CONST R0, xFF

CONST R1, xF0

CONST R2, x01

AND R1, R2, R1

OR R0, R0, R1

AND R0, R0, R2

A. 0xFF

B. 0xF0

C. 0x01

D. 0xF1

E. I’m not sure

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Shift Instructions

❖ Has all three shift types

▪ SLL -> Shift Left

▪ SRA -> Shift Right Arithmetic

▪ SRL -> Shift Right Logical

15

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Lecture Outline

❖ LC4 Review & shift instructions

❖ Instructions as bits & HICONST

❖ Program Counter, JMP, BR, JSR

❖ LC4 misc. syntax

16

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Instruction Encodings

❖ Instructions are stored in memory over the lifetime of the
program

❖ Each Instruction fills one memory location (16 bits)

❖ These 16 bits can be read to:

▪ Identify the instruction

▪ Identify the registers used in that instruction

▪ Identify any integer constants used in that instruction

17

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Encoding Example: Op-codes

❖ Many instructions are grouped into categories.

▪ Arithmetic Instructions, Logical Instructions, Shift instructions…

❖ This group can be identified by the first 4-bits of the
instructions called the op-code

▪ If the group has more than one instruction, a sub-op-code stored
elsewhere in the instruction is used to identify the instruction.

❖ Example:

❖ The op-code is the first four bits “0001”

18

0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Encoding Examples: ADD

❖ ADD Rd, Rs, Rt encoding:

▪ 0001 is the op-code, identifies this part of the arithmetic group

▪ 000 is the sub-op-code which specifies that this is the
ADD Rd, Rs, Rt instruction within the arithmetic group

▪ ddd, sss, and ttt specify the corresponding register

• Since there are only 8 registers, only 3 bits needed to specify a
register (8 = 23)

❖ All instruction encoding formats are on the reference
sheet ☺

19

16 bits broken into 4-bit

chunks for easier reading

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Decoding Example:

❖ Consider the following 16 bits:

❖ Decoding steps:

▪ Identify group by reading the op-code

▪ Identify the instruction from sub-op-code if needed

▪ Use the encoding format to decode the instruction

❖ ADD Rd, Rs, Rt encoding:

20

0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

CMOS Examples #1

21

❖ What instruction does this 16-bit value represent?
▪ Bonus, what registers and/or register constants are being used?

pollev.com/tqm

A. MOD

B. SLL

C. SRA

D. SRL

E. I’m not sure

1 0 1 0 1 0 0 0 1 1 0 0 0 1 1 1

1 0 1 0 1 0 0 0 0 1 1 11 1 0 0

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

CONST Limitations

❖ Remember when I introduced CONST?

❖ CONST Rd, IMM9

▪ Action: Rd = SEXT(IMM9)

▪ Store an integer constant in the specified register

▪ IMM9 = 9-bit 2C integer immediate

▪ SEXT stands for Sign Extension.

▪ A register is 16 bits, but the value we are storing is only 9 bits

❖ What if we wanted to set Rd to be a number that can’t be
represented in 9-bit 2C?

23Can only fit a 9-bit pattern in the instruction encoding 

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

CONST & HICONST

❖ If we wanted to set a register to value that can’t be
expressed in 9-bit 2C, we need to use CONST and then
HICONST

❖ HICONST Rd, UIMM8

▪ Action: Rd = (Rd & 0xFF) | (UIMM8 << 8)

▪ Sets the upper 8 bits of Rd to be the specified 8-bit pattern.

▪ Keeps the lower 8 bits of Rd the same.

24

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Lecture Outline

❖ LC4 Review & shift instructions

❖ Instructions as bits & HICONST

❖ Program Counter, JMP, BR, JSR

❖ LC4 misc. syntax

25

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Code in Memory

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory

26

CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Code in Memory

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory

27

CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Code in Memory

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory

28

CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Code in Memory

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory

29

CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Program Counter

❖ The Program Counter (PC) is a special register that keeps
track of the address of the next instruction to execute

❖ Implicitly, every instruction we have covered so far also
increments the PC

▪ ADD doesn’t just perform addition, but also moves on to the next
instruction to execute (the instruction after it)

30

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Jump: JMP & JMPR

❖ JMP IMM11

▪ Action: PC = PC + SEXT(IMM11) + 1

▪ JMP == "Jump"

▪ Modifies the PC by the specified amount + 1

▪ IMM11 = 11-bit 2C integer immediate

▪ SEXT stands for Sign Extension.

❖ JMPR Rs

▪ Action: PC = Rs

▪ JMPR == "Jump Register"

▪ Updates the PC to hold the 16-bit address stored in Rs

31

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

CMOS Examples #1

32

❖ What is the final value of R1 after executing this code?

pollev.com/tqm

A. 5

B. 10

C. 3

D. 6

E. I’m not sure

0 CONST R0, #3

1 CONST R1, #2

2 ADD R1, R1, R0

3 JMP #1

4 ADD R1, R1, #4

5 ADD R1, R1, #1

6 …

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Lecture Outline

❖ LC4 Review & other “basic” instructions

❖ Instructions as bits

❖ Program Counter & JMP

❖ Conditional jumps

❖ Subroutine Calls

❖ Penn Sim

39

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

NZP

❖ LC4 has 3 bits that are reserved to keep track of NZP

▪ NZP == Negative Zero Positive

❖ Anytime a register is written to, NZP is updated to reflect
whether the value written was Negative, Zero or Positive.

▪ The value written is interpreted as a 16-bit 2C number

❖ CONST R4, #0

▪ Sets NZP to be 010 (N = 0, Z = 1, P = 0)

❖ If ADD R2, R4, #1 is executed afterwards

▪ Sets NZP to be 001 (N = 0, Z = 0, P = 1)

40

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Conditional Jumps

❖ JMP and JMPR are instructions that always jump when
executed. We may not always want to jump though.

❖ We can instead jump based on the status of the NZP bits
using Br instructions

41

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Branch Instructions

❖ Each possible way to test NZP bits has a corresponding
branch instruction

▪ If NZP test combination is 000, the branch always fails and so is
considered a “NOP” (No Operation) and only increments PC

▪ If NZP test combination is 111, the branch is always taken
42

Mnemonic Semantics Encoding

NOP PC = PC + 1 0000000xxxxxxxxx

BRp IMM9 (P) ? PC = PC + 1 + sext(IMM9) 0000001IIIIIIIII

BRz IMM9 (Z) ? PC = PC + 1 + sext(IMM9) 0000010IIIIIIIII

BRzp IMM9 (Z|P) ? PC = PC + 1 + sext(IMM9) 0000011IIIIIIIII

BRn IMM9 (N) ? PC = PC + 1 + sext(IMM9) 0000100IIIIIIIII

BRnp IMM9 (N | P) ? PC = PC + 1 + sext(IMM9) 0000101IIIIIIIII

BRnz IMM9 (N|Z) ? PC = PC + 1 + sext(IMM9) 0000110IIIIIIIII

BRnzp IMM9 (N|Z|P) ? PC = PC + 1 + sext(IMM9) 0000111IIIIIIIII

NZP itself can only ever be
100, 010, or 001

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

CMOS Examples #1

43

❖ What is the final value of R2 after executing this code?

pollev.com/tqm

A. 5

B. 2

C. 3

D. 4

E. I’m not sure

0 CONST R0, #5

1 CONST R1, #2

2 CONST R2, #0

3 ADD R2, R2, #1

4 SUB R0, R0, R1

5 BRp #-3

6 ...

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Comparison Instructions

❖ Instructions that only modifies NZP and increments PC

▪ Useful for checking a value before a BR instruction

▪ Different variants for signed and unsigned values

▪ Variants with immediate useful for things like
i > 0, i == 1, j < 10 etc.

❖ Performs comparison differently from the SUB
instruction, CMP instructions can handle overflow safely

54

Mnemonic Semantics Encoding

CMP Rs, Rt NZP = sign(Rs - Rt) 0010sss00----ttt

CMPU Rs, Rt NZP = sign(uRs - uRt) 0010sss01----ttt

CMPI Rs, IMM7 NZP = sign(Rs - SEXT(IMM7)) 0010sss10IIIIIII

CMPIU Rs, UIMM7 NZP = sign(uRs - SEXT(UIMM7)) 0010sss11IIIIIII

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

JSR and JSRR

❖ JSR IMM11

▪ Action: R7 = PC + 1,
PC = (PC & 0x8000) | (IMM11 << 4)

▪ “Jump Subroutine”

▪ Stores PC + 1 in R7 before jumping so that after the
subroutine, we can return to right after JSR

❖ JSRR Rs

▪ Action: R7 = PC + 1, PC = Rs

▪ “Jump Subroutine Register”

❖ We use these to implement function calls in higher level
languages (More on this later in the semester)

55

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

TRAP & RTI

❖ Instructions for making System Calls & leaving/entering
the Operating System

❖ More on these in ~2 weeks when we briefly talk about
what an operating system is.

56

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Lecture Outline

❖ LC4 Review & shift instructions

❖ Instructions as bits & HICONST

❖ Program Counter, JMP, BR, JSR

❖ LC4 misc. syntax

57

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

More LC4 Syntax

❖ Integer Immediates (CONST, HICONST, ADD, SLL, etc.)
can be either in hexadecimal or in decimal form
▪ Hexadecimal constants 0xFF or xFF

▪ Decimal constants: #240, #-240

❖ Comments

▪ Comments in LC4 are preceded by a ;

❖ Example:

58

CONST R0, 0x20

CONST R1, x10

CONST R2, #64

; this is a comment

DIV R3, R2, R1 ; this is a comment too

ADD R3, R3, R0

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

LC4 Labels

❖ It can be cumbersome to calculate offsets for jumps.

❖ LC4 assembler allows us to put labels on memory. We can
use labels for Jumps and Branch instructions to make our
lives easier

▪ A Label is just a “name” for a memory location. Like how we can
refer to a memory location with an address.

❖ Example:

59

CONST R0, #5

CONST R1, #2

CONST R2, #0

LOOP ADD R2, R2, #1

SUB R0, R0, R1

BRp LOOP

END JMP #-1

Labels

Assembler will calculate the
offset to the specified label
for us

CIS 2400, Fall 2022L08: LC4 Instruction OverviewUniversity of Pennsylvania

Next Lecture:

❖ PennSim Demo

❖ Program Design in LC4

❖ Accessing Memory in LC4

❖ Pointers, Arrays, Strings

60

