
CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

LC4 Single Cycle Processor
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

2

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Logistics

❖ Check-in04: Due before lecture on Wednesday

❖ HW04 LC4 Programming: This Friday 10/14 @ 11:59 pm

▪ Should have everything you need

▪ Practice in Recitations this week

▪ Normal programming assignment ☺

❖ HW05 Control Signals: to be released this Friday

▪ Programming assignment

3

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Lecture Outline

❖ Von Neuman & Processor Start

❖ LC4 Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”

4

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Reminder: Instructions are bits

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory

5

CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

This Lecture: Hardware/Software Interface

❖ We’ve looked at some hardware topics and some
software topics (LC4 assembly)

❖ Today we are looking at the hardware/software interface
for the LC4 ISA

▪ How does assembly run on hardware?

▪ How do we create hardware that runs assembly code?

❖ Hardware details abstracted, uses a lot of the
components previously talked about (Mux, Adders,
Incrementors, etc.)

▪ You will implement something like this in CIS 4710

6

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

An Idea of what we are doing this lecture:

7

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

More LC4 References!

❖ More LC4 References added to the course website

❖ Highly recommend you print out a copy of the
“Control Signals Description” handout

❖ LC4 Single Cycle Processor is the diagram on the previous
slide

❖ ALU Internals explains slightly more detail about the ALU
than I will cover

8

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Aside: bit selecting syntax

❖ Assume we have a 16-bit pattern called X

▪ X:

❖ We can refer to a specific subsection
of X with the syntax X[n:m]

▪ X[15:0] // all 16 bits

▪ X[2:0] // 3 least most significant bits

▪ X[5:4] // 2 bits in the middle

9

0001000001000101

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

The Von Neumann Loop

❖ Von Neumann Processor essentially does:

▪ Fetch instruction at Program Counter

▪ Decode instruction

▪ Execute instruction & Update PC

▪ Repeat

❖ Critical Requirement

▪ Each iteration of this loop must appear atomic (All or nothing)

▪ Key word from programmer perspective: atomic

• Maintains sanity

▪ Key word from hardware perspective: appear

• Enables hardware to perform various tricks for performance >:]

10

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Lecture Outline

❖ Von Neuman & Processor Start

❖ LC4 Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”

11

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Fetch & Decode

❖ First & second step: Fetch an instruction and decode it

▪ Read instruction at PC in memory (stored as 16 bits)

▪ From those 16-bits, outputs signals to
control the processor to execute
the instruction.

▪ Common exam question: implement
part of the decoder with logic gates.

12

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Fetch & Decode: ADD R0, R1, R5

❖ Throughout this lecture, we will assume we just fetched
the instruction ADD R0, R1, R5 and decide what the
control signals for this should be

❖ We have fetched and decoded the
instruction, now we must execute it

13

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Register File

❖ Array of the 8 general purpose processor registers R0 - R7

❖ We use control signals to decide what registers we are
using and if we are writing to the register file

❖ Note the usage of a MUX to select register addresses

❖ Not a typical “File” on a computer

14

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Register File: ADD R0, R1, R5

❖ rsMux.CTL, rtMux.CTL, rdMux.CTL

▪ These signals decide which register should be Rs, Rt, and Rd
respectively.

❖ How to decide signals generally:

▪ Look at the options available for this control signal
(Single Cycle handout or Control Signal Description handout)

▪ Determine which signal matches up for
the current instruction

❖ ADD Example:

▪ What is used for Rs in ADD?

▪ I[8:6], so rsMux.CTL is 0
15

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Control Signals Description Handout

❖ Can use the Control Signals Description Handout to look
up signals

❖ If ADD has Rs chosen by I[8:6]

❖ Then rsMux.CTL should be 0
16

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Register File: ADD R0, R1, R5

❖ rsMux.CTL, rtMux.CTL, rdMux.CTL

▪ These signals decide which register should be Rs, Rt, and Rd
respectively.

❖ ADD Example:

▪ What is used for Rd and Rt in ADD?

▪ I[11:9] for Rd, so rdMux.CTL is 0

▪ I[2:0] for Rt, so rtMux.CTL is 0

❖ regFile.WE: write-enable for the
register file. If we are writing to a
register it should be 1, 0 otherwise

▪ ADD writes to a register, so regFile.WE is 1
17

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

ALU: Arithmetic Logic Unit

❖ Performs Arithmetic and Logical operations

▪ Where most instructions perform their “work”

❖ Use Control Signals to decide what operation is
performed and what the inputs are

18

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

ALU: ADD R0, R1, R5

❖ ALU.CTL decides which arithmetic/logical operation to
perform.

▪ 21 different options: look at the control signals description sheet

❖ ADD operation is C = A + B with all 16 bits form each, no
Sign EXTension, etc. So ALU.CTL is 0

19

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

ALU: ADD R0, R1, R5

❖ ALUInputMux.CTL decides what the second input to the
ALU will be.

▪ The first input is always the 16 bit value stored in Rs

▪ The second value can either be:

• the value in Rt

• the 16-bits of the instruction encoding

❖ ADD R0, R1, R5 uses Rt
so ALUInputMux.CTL is 0

❖ If we executed an instruction that had
an integer immediate, then we use
the bits from the instruction

20

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Branch Unit

❖ Updates PC and the NZP bits

❖ PCMux.CTL: decides how PC is updated

21

Previous PC

0: NZP test then
OC = PC +1
or
PC = PC + 1 + IMM9

1: PC = PC +1

2: PC = PC +1 + IMM11
3: PC = RS
4: PC = 0x8000 | IMM8

5: PC = PC & 0x8000 |
(IMM11 << 4)

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Branch Unit: ADD R0, R1, R5

❖ How does ADD R0, R1, R5 update the PC?

▪ PC = PC + 1 so, PCMux.CTL is 1

22

Previous PC

0: NZP test then
OC = PC +1
or
PC = PC + 1 + IMM9

1: PC = PC +1

2: PC = PC +1 + IMM11
3: PC = RS
4: PC = 0x8000 | IMM8

5: PC = PC & 0x8000 |
(IMM11 << 4)

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Branch Unit: ADD R0, R1, R5

❖ NZP.WE: decides if NZP is updated for this instruction.

❖ Is NZP updated for ADD?

▪ Yes, so NZP.WE is 1

23
Previous PC

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Data Memory

❖ Contains the data memory of our program

❖ Takes in the:

▪ Address of the data to access

▪ What data to write at that address

❖ Outputs the data at the
specified address

❖ DATA.WE decides if we are updating
any data in memory.

▪ Does ADD update any data in memory?

▪ No, so DATA.WE for ADD is 0

24

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

regInputMux.CTL

❖ Decides what gets written back to the register file

▪ 0 = output of ALU

▪ 1 = output of data memory

▪ 2 = PC + 1

25

P
C

 +
 1

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

The Complete Picture

26

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Privilege.CTL

❖ More on Privilege in future lectures

❖ Short version: TRAP and RTI modify privilege, all other
instructions leave it alone.

❖ All instructions except TRAP and RTI have
Privilege.CTL set to 2

27

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Questions?

28

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

Reminder: Circuits are not Code

❖ We are dealing with circuits, not software

▪ All components are “working” all the time.

▪ We may not be using their output all the time though.

❖ WE Signals always matter, we never “don’t care” about
them

▪ Example: ADD and DATA.WE

• ADD doesn’t use data memory at all,
but the data address and data input will still
be some value (which may be garbage)

• We do NOT want to write garbage to memory
so DATA.WE should be 0

29

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

CMOS Examples #1

30

❖ What are the control signals for the JMP instruction?
▪ 11 different control signals questions on PollEv

❖ Probably want to pull up the Control Signals Description, LC4
Instruction, and Single Cycle Sheet

❖ If you are reading the slides after lecture and want to go
over this, should probably watch the lecture recording

pollev.com/tqm

CIS 2400, Fall 2022L10: LC4 Single CycleUniversity of Pennsylvania

“Single Cycle”

❖ This whole Lecture I’ve been talking about processor with
the term “Single Cycle”

▪ This means that one instruction is executed in one clock cycle.

▪ That means the length of the program is directly proportional to
the number of instructions executed

❖ “Single Cycle” is a convenient way for programmers to
think about the processor, but most current processors
are not like this

▪ More on Wednesday

31

