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Logistics

❖ Check-in04: Due before lecture on Wednesday

❖ HW04 LC4 Programming: This Friday 10/14 @ 11:59 pm

▪ Should have everything you need

▪ Practice in Recitations this week

▪ Normal programming assignment ☺

❖ HW05 Control Signals: to be released this Friday

▪ Programming assignment
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Lecture Outline

❖ Von Neuman & Processor Start

❖ LC4 Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”
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Reminder: Instructions are bits

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed 
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory
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CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)
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This Lecture: Hardware/Software Interface

❖ We’ve looked at some hardware topics and some 
software topics (LC4 assembly)

❖ Today we are looking at the hardware/software interface 
for the LC4 ISA

▪ How does assembly run on hardware?

▪ How do we create hardware that runs assembly code?

❖ Hardware details abstracted, uses a lot of the 
components previously talked about (Mux, Adders, 
Incrementors, etc.)

▪ You will implement something like this in CIS 4710
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An Idea of what we are doing this lecture:
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More LC4 References!

❖ More LC4 References added to the course website

❖ Highly recommend you print out a copy of the
“Control Signals Description” handout

❖ LC4 Single Cycle Processor is the diagram on the previous 
slide

❖ ALU Internals explains slightly more detail about the ALU 
than I will cover

8



CIS 2400, Fall 2022L10:  LC4 Single CycleUniversity of Pennsylvania

Aside: bit selecting syntax

❖ Assume we have a 16-bit pattern called X

▪ X:

❖ We can refer to a specific subsection
of X with the syntax X[n:m]

▪ X[15:0] // all 16 bits

▪ X[2:0] // 3 least most significant bits

▪ X[5:4] // 2 bits in the middle
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The Von Neumann Loop

❖ Von Neumann Processor essentially does:

▪ Fetch instruction at Program Counter

▪ Decode instruction

▪ Execute instruction & Update PC

▪ Repeat

❖ Critical Requirement

▪ Each iteration of this loop must appear atomic (All or nothing)

▪ Key word from programmer perspective: atomic

• Maintains sanity

▪ Key word from hardware perspective: appear

• Enables hardware to perform various tricks for performance >:]
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Lecture Outline

❖ Von Neuman & Processor Start

❖ LC4 Singe Cycle Processor

▪ Decoder

▪ Register File

▪ ALU

▪ Branch unit

▪ The Rest

▪ “Single Cycle”
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Fetch & Decode

❖ First & second step: Fetch an instruction and decode it

▪ Read instruction at PC in memory (stored as 16 bits)

▪ From those 16-bits, outputs signals to
control the processor to execute
the instruction.

▪ Common exam question: implement
part of the decoder with logic gates.
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Fetch & Decode: ADD R0, R1, R5

❖ Throughout this lecture, we will assume we just fetched 
the instruction ADD R0, R1, R5 and decide what the
control signals for this should be

❖ We have fetched and decoded the
instruction, now we must execute it
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Register File

❖ Array of the 8 general purpose processor registers R0 - R7

❖ We use control signals to decide what registers we are 
using and if we are writing to the register file

❖ Note the usage of a MUX to select register addresses

❖ Not a typical “File” on a computer
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Register File: ADD R0, R1, R5

❖ rsMux.CTL, rtMux.CTL, rdMux.CTL

▪ These signals decide which register should be Rs, Rt, and Rd
respectively.

❖ How to decide signals generally:

▪ Look at the options available for this control signal
(Single Cycle handout or Control Signal Description handout) 

▪ Determine which signal matches up for
the current instruction

❖ ADD Example:

▪ What is used for Rs in ADD?

▪ I[8:6], so rsMux.CTL is 0
15
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Control Signals Description Handout

❖ Can use the Control Signals Description Handout to look 
up signals

❖ If ADD has Rs chosen by I[8:6]

❖ Then rsMux.CTL should be 0
16
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Register File: ADD R0, R1, R5

❖ rsMux.CTL, rtMux.CTL, rdMux.CTL

▪ These signals decide which register should be Rs, Rt, and Rd 
respectively.

❖ ADD Example:

▪ What is used for Rd and Rt in ADD?

▪ I[11:9] for Rd, so rdMux.CTL is 0

▪ I[2:0] for Rt, so rtMux.CTL is 0

❖ regFile.WE: write-enable for the
register file. If we are writing to a
register it should be 1, 0 otherwise

▪ ADD writes to a register, so regFile.WE is 1
17
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ALU: Arithmetic Logic Unit

❖ Performs Arithmetic and Logical operations

▪ Where most instructions perform their “work”

❖ Use Control Signals to decide what operation is 
performed and what the inputs are
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ALU: ADD R0, R1, R5

❖ ALU.CTL decides which arithmetic/logical operation to 
perform.

▪ 21 different options: look at the control signals description sheet

❖ ADD operation is C = A + B with all 16 bits form each, no 
Sign EXTension, etc. So ALU.CTL is 0
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ALU: ADD R0, R1, R5

❖ ALUInputMux.CTL decides what the second input to the 
ALU will be.

▪ The first input is always the 16 bit value stored in Rs

▪ The second value can either be:

• the value in Rt

• the 16-bits of the instruction encoding

❖ ADD R0, R1, R5 uses Rt
so ALUInputMux.CTL is 0

❖ If we executed an instruction that had
an integer immediate, then we use
the bits from the instruction
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Branch Unit

❖ Updates PC and the NZP bits

❖ PCMux.CTL: decides how PC is updated
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Previous PC

0: NZP test then
OC = PC +1
or
PC = PC + 1 + IMM9

1: PC = PC +1

2: PC = PC +1 + IMM11
3: PC = RS
4: PC = 0x8000 | IMM8

5: PC = PC & 0x8000 |
(IMM11 << 4)
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Branch Unit: ADD R0, R1, R5

❖ How does ADD R0, R1, R5 update the PC?

▪ PC = PC + 1 so, PCMux.CTL is 1
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Previous PC

0: NZP test then
OC = PC +1
or
PC = PC + 1 + IMM9

1: PC = PC +1

2: PC = PC +1 + IMM11
3: PC = RS
4: PC = 0x8000 | IMM8

5: PC = PC & 0x8000 |
(IMM11 << 4)
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Branch Unit: ADD R0, R1, R5

❖ NZP.WE: decides if NZP is updated for this instruction.

❖ Is NZP updated for ADD?

▪ Yes, so NZP.WE is 1

23
Previous PC
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Data Memory

❖ Contains the data memory of our program

❖ Takes in the:

▪ Address of the data to access

▪ What data to write at that address

❖ Outputs the data at the
specified address

❖ DATA.WE decides if we are updating
any data in memory.

▪ Does ADD update any data in memory?

▪ No, so DATA.WE for ADD is 0
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regInputMux.CTL

❖ Decides what gets written back to the register file

▪ 0 = output of ALU

▪ 1 = output of data memory

▪ 2 = PC + 1

25
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The Complete Picture
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Privilege.CTL

❖ More on Privilege in future lectures

❖ Short version: TRAP and RTI modify privilege, all other 
instructions leave it alone.

❖ All instructions except TRAP and RTI have
Privilege.CTL set to 2
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Questions?
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Reminder: Circuits are not Code

❖ We are dealing with circuits, not software

▪ All components are “working” all the time.

▪ We may not be using their output all the time though.

❖ WE Signals always matter, we never “don’t care” about 
them

▪ Example: ADD and DATA.WE

• ADD doesn’t use data memory at all,
but the data address and data input will still
be some value (which may be garbage)

• We do NOT want to write garbage to memory
so DATA.WE should be 0
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CMOS Examples #1
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❖ What are the control signals for the JMP instruction?
▪ 11 different control signals questions on PollEv

❖ Probably want to pull up the Control Signals Description, LC4 
Instruction, and Single Cycle Sheet

❖ If you are reading the slides after lecture and want to go 
over this, should probably watch the lecture recording

pollev.com/tqm
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“Single Cycle”

❖ This whole Lecture I’ve been talking about processor with 
the term “Single Cycle”

▪ This means that one instruction is executed in one clock cycle.

▪ That means the length of the program is directly proportional to 
the number of instructions executed

❖ “Single Cycle” is a convenient way for programmers to 
think about the processor, but most current processors 
are not like this

▪ More on Wednesday
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