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Logistics

❖ Check-in06 Due Wednesday 11/2 @ 4:59 pm

❖ HW06 (Video Game) Due Friday 11/4 @ 11:59 pm

▪ Should have everything you need after this lecture

❖ Midsemester Survey Due Wednesday 11/9 @ 11:59 pm

❖ HW03 Regrade Requests are open

▪ Close at 11:59 pm Friday 11/4
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Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf
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CIS 2400

❖ First half of the 
course is more 
hardware focused

❖ Second Half is from a 
more software / 
programming 
perspective

❖ Later, we will 
connect these two 
halves
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Brief C History

❖ The history of C is closely tied to UNIX

▪ UNIX is an OS family/design, C is a programming language

▪ C was developed alongside UNIX for writing various UNIX utilities 
and UNIX was eventually re-written in C. This made UNIX one of 
the first Operating Systems not written in just assembly

▪ C allows users to have direct control over memory and expects 
most users to have knowledge of the underlying architecture

▪ Unix and C are extremely influential.

• Part of this is due to Bell Labs (where C and UNIX were made) not 
being allowed to copyright it. C and UNIX were “Open Source”

• Most OS’s are “Unix-like” (Android OS, Chrome OS, macOS, iOS, Linux)

• Linux is sort of the “successor” of UNIX

6
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C Language family

❖ Many languages adopted similar syntax to C due to it’s 
success. (curly braces, function definitions, if/while/for 
syntax, variable declarations etc.)

❖ Examples

▪ C (1969)

▪ C++ (1979)

▪ Objective-C (1986)

▪ Perl (1988)

▪ Java (1991)

▪ Javascript (1995)

▪ Rust (2010)

▪ …

7

This means Java code can look very 
similar to C code. A lot of C code is 
readable if you are comfortable 
with Java
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First C program: Hello World

8

#include <stdio.h>

#include <stdlib.h>

int main() {

printf("Hello World!\n");

return EXIT_SUCCESS;

}

Similar to import statements. 
Allows us to use the std I/O and std 
library modules of C

Still have a main() 
function to indicate 
where the program 
starts execution.

Function is wrapped in 
curly bracesDouble quotes to 

indicate a string literal. 
parenthesis to call a 
function

Return statements
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Second C program: sum evens

9

#include <stdio.h>

#include <stdlib.h>

int sum_evens(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

if (i % 2 == 0) {

sum += i;

}

}

return sum;

}

int main() {

int sum = sum_evens(5);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

Function declarations & 
parameters

Variables local to the 
function

For loops & if statements look similar

Print statements are different to format output. This replaces 
%d with the value of sum, more later in lecture
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Another Similarity: Scope

❖ Variables declared inside of a function are local to that 
function and are not visible outside of that scope.

❖ Some older C compilers, like lcc, are picky about how you 
initialize variables. Lcc won’t let you initialize  variable in a 
for loop declaration (for(int i = 0; …) . Newer c 
compilers like clang and gcc do not require this.

❖ Variables can also be declared outside of a function –
these variables typically have global scope but there are 
some subtleties 

10
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C vs Java Similarities Overview

❖ C and Java are very similar syntactically

❖ Similarities:

▪ Control Structures (if/else/for/while/…)

▪ Variables and data types (int/char/float/double/…)

▪ Arrays and strings exist in both
(but are also different implementation wise)

▪ Statements & Expressions
x = (y + z) / 2

▪ Proper functions

11
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C vs Java

❖ C and Java are Syntactically Similar, but …

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

❖ From my experience, a common source for making 
mistakes in C is forgetting that things are not like Java

12
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C vs Java: Differences

❖ C is functionally very different than Java

❖ Some differences:

▪ C doesn’t default initialize anything

▪ C doesn’t have objects

▪ C compiles down to machine code

▪ C runs really fast

▪ C doesn’t check much in terms of safety, no nice error messages 
like Java has

▪ C is “just above” assembly in terms of abstraction

▪ C allows for direct memory access

13
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C vs Java: Motivations

❖ Java aims to shield the programmer from the details of 
machine, including memory management

▪ Garbage Collection

▪ Default Initialization

❖ C expects you to be intimately familiar with how the 
machine works. Allows you to manipulate machine state 
directly.

▪ Directly access memory locations 

▪ Store and manipulate addresses

▪ Allocate and deallocate resources

14

Today’s topic, 

extremely important 

in C

Wednesday’s topic
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Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

15
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Pointers

❖ Variables that store addresses 

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition:  type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address 

• Trying to access that data at that address will treat the data there as 
an int

16

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY 

IMPORTANT IN C



CIS 2400, Fall 2022L15:  C, Pointers, Arrays, StringsUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

17

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 240;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2
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0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example

18

int main(int argc, char** argv) {

int a, b, c;

int* ptr;   // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers 

each fit into a single memory location

Initial values 

are garbage
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0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example

19

int main(int argc, char** argv) {

int a, b, c;

int* ptr;   // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

20

int main(int argc, char** argv) {

int a, b, c;

int* ptr;   // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

21

int main(int argc, char** argv) {

int a, b, c;

int* ptr;   // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example

22

int main(int argc, char** argv) {

int a, b, c;

int* ptr;   // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers 

each fit into a single memory location
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Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

23

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}



CIS 2400, Fall 2022L15:  C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

24

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

soln1

soln2

?

?

Red arrow indicates the 
NEXT line to execute
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Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

25

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

?

?

soln1

soln2

a

b

c

2.0 

4.0

0.0

d ?

Red arrow indicates the 
NEXT line to execute
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Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

26

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

?

?

soln1

soln2

a

b

c

2.0 

4.0

0.0

d 16.0

Red arrow indicates the 
NEXT line to execute
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Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

27

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

0

?

soln1

soln2

a

b

c

2.0 

4.0

0.0

d 16.0

Red arrow indicates the 
NEXT line to execute
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Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

28

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

0.0

-2.0

soln1

soln2

a

b

c

2.0 

4.0

0.0

d 16.0

Red arrow indicates the 
NEXT line to execute
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Output Parameters

❖ Pointers can be used to “return” more than one value 
from a function

29

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

soln1

soln2

0.0

-2.0

Red arrow indicate the 
NEXT line to execute
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CMOS Examples #1

30

❖ What is printed in this program? 

pollev.com/tqm

A. 5, 22, 42

B.   42, 42, 37 

C. 42, 22, 37          

D. 5, 42, 37

E. I’m not sure

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}
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CMOS Examples #1

31

❖ What is printed in this program? 

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 22 c 42

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1

32

❖ What is printed in this program? 

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 22 c

foo

x y z

42

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1

33

❖ What is printed in this program? 

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 22 c

foo

x y z

42

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1

34

❖ What is printed in this program? 

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 42 c

foo

x y z

42

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1

35

❖ What is printed in this program? 

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 42 c

foo

x y z

37

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1

36

❖ What is printed in this program? 

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 42 c 37

D. 5, 42, 37

Red arrow indicates the 
NEXT line to execute
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Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

37
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Arrays

❖ Definition:  type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable 
or hard-code it in

38

type name[size]
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Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be 

used as an assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the 
array

• Cannot be assigned to / changed

39

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault
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Multi-dimensional Arrays

❖ Generic 2D format:  
type name[rows][cols];

▪ Still allocates a single, contiguous chunk of memory

▪ C is row-major

▪ Can access elements with multiple indices

• A[0][1] = 7;

• my_int = A[1][2];

▪ The entries in this array are stored in memory in row major order 
as follows:

•A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]

▪ 2-D arrays normally only useful if size known in advance.  
Otherwise use dynamically-allocated data and pointers (later)

40
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Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

41

int sumAll(int a[]) {

int i, sum = 0;

for (i = 0; i < ...???

}

Passes in address of start of array

int sumAll(int* a) {

int i, sum = 0;

for (i = 0; i < ...???

}

Equivalent

❖ Note: Array syntax works on pointers

▪ E.g. ptr[3] = ...;



CIS 2400, Fall 2022L15:  C, Pointers, Arrays, StringsUniversity of Pennsylvania

Solution: Pass Size as Parameter

42

int sumAll(int* a, int size) {

int i, sum = 0;

for (i = 0; i < size; i++) {

sum += a[i];

}

return sum;

}

❖ Standard idiom in C programs
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Pointer Arithmetic

❖ In LC4, we did arithmetic on addresses to iterate through 
arrays. We can do the same in C

▪ : 

❖ Pointers are typed

▪ Tells the compiler the size of the data you are pointing to

❖ Pointer arithmetic is scaled by sizeof(*ptr)

▪ Sometimes a single array element
can span multiple addresses

▪ Works nicely for arrays
43

Size (number of bytes) of 

thing being pointed at

double my_array[10]; // create an array of 10 doubles

double *ptr = my_array; // ptr has the address of the

// first element

ptr = ptr + 1; // increment ptr to point to

// the next elemetnt

ptr[2] = 3.14; // equivalent to *(ptr + 2) = 3.14
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Pointer Square Brackets 

❖ We can use the “array syntax” on pointers

❖ This syntax is the same as

❖ Fun Fact, these are all the same in C:

44

ptr[3] = ...;

*(ptr + 3) = ...;

*(ptr + 3) = ...;

*(3 + ptr) = ...;

3[ptr] = ...;

ptr[3] = ...;
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

A. 2, 3, 5, 6

B.   38, 38, 5, 6 

C. 2, 38, 5, 2           

D. 2, 38, 5, 5

E. I’m not sure

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];

2 3 5 6

nums

ptr

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];

2 0 5 6

nums

ptr

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];

2 0 5 6

nums

ptr

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];

2 38 5 6

nums

ptr

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];

2 38 5 6

nums

ptr

Red arrow indicates the 
NEXT line to execute
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CMOS Examples #1
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❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++; 

ptr[0] = 38;

ptr++; 

ptr[1] = nums[0];

2 38 5 2

nums

ptr

C. 2, 38, 5, 2           

Red arrow indicates the 
NEXT line to execute



CIS 2400, Fall 2022L15:  C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

52
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Strings without Objects

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can have 
use array of characters as a string

❖ Example:

53

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!"; 
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Null Termination

❖ Arrays don’t have a length, but we mark the end of a 
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

54

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

DO NOT FORGET THIS. THIS IS 

THE CAUSE OF MANY BUGS
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String library Functions 

❖ Many Library functions are provided for processing strings

❖ Most are found in the header file <string.h>

▪ strlen(char* str)– returns the number of characters in 
the string excluding the null terminator.

▪ strcpy(char *s1, char *s2)- copies the string in s2 into 
s1. Assumes that s1 has enough space to store the copy.

▪ strcmp(char *s1, char *s2) – compares two strings 
and returns < 0 if s1 < s2, > 0 if s1 > s2 and 0 if they are the same 
string

55
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More Library functions

❖ There are also other useful functions defined in 
<ctypes.h>
▪ isalnum(int c) returns non-zero if c is an alphanumeric 

character

▪ isspace(int c) returns non-zero if c is a space character

▪ tolower(int c) if c is an uppercase letter, returns the 
lowercase counterpart. If c is not an uppercase letter, c is 
returned.

❖ There are more functions that exist that you may find 
useful.

56



CIS 2400, Fall 2022L15:  C, Pointers, Arrays, StringsUniversity of Pennsylvania

C Standard Library

❖ Not as big as Java standard libraries but has many useful 
functions. 

❖ Don’t reinvent something that already exists

❖ Examples:
▪ stdio.h useful for I/O, printing, reading input, etc.

▪ ctypes.h functions for converting and testing char’s

▪ math.h mathematical functions (pow, sqrt, etc.) 

▪ stdlib.h general purpose functions

▪ string.h functions for using strings

57



CIS 2400, Fall 2022L15:  C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf
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Formatted I/O

❖ Many programs need to convert between the bit values a 
computer manipulates and something a human can read

▪ Example: converting between the  binary encoding for an int into 
readable string

❖ Often done by the following functions or variants of them
▪ printf

• Prints a formatted string to the console

▪ scanf

• Reads a formatted string from the console
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Formatted I/O

❖ Remember that EVERYTHING is stored as bits.

❖ Do not confuse what you read on the terminal with the 
actual representation of data in memory

❖ Converting bits to be human readable is a big part of 
formatted output

60
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Formatting Example

❖ Do you recognize the following 32 bit single precision 
value?:

▪ 01000000010010010000111111011011

❖ Let’s run a number to string procedure to convert it into 
sequence of ASCII characters

▪ 0x33, 0x2E, 0x31, 0x34, 0x31, 0x35, 0x39

❖ What about now?

▪ 3.14159
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Another Formatting Example

❖ Recognize the following 16 bit 2C integer value?

▪ 1111001001110001

❖ Here are the ASCII characters in its decimal representation

▪ 0x2D, 0x33, 0x34, 0x37, 0x30

❖ Here is what it would look like printed out.

▪ -3470
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Formatting Strings

❖ To specify how bits should be interpreted for printing and 
scanning. We must use a format string

❖ A format string is just a string with formatting specifiers:
▪ %d – a decimal integer value

▪ %x – a hexadecimal value

▪ %s – a string

▪ %f – a floating point value

❖ For printf- these formatting subsequences may be 
accompanied by field width and precision specifiers
▪ %12.3f – prints a floating-point number using 12 characters 

with three digits after the decimal place
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Special Characters

❖ There are also special characters that can show up in any 
string which have special meaning
▪ '\n' : newline character

▪ '\t' : tab character

64
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Formatting Printing Example

65

int main(int argc, char** argv) {

int a = 27;

double b = 3.14159;

// simple string output with a newline at the end

printf("Hello World\n");

// formatted output that will perform

// numerical conversions

printf("a = %d, b = %7.3f\n", a, b);

}

Hello World

a = 27, b =   3.142

Outputs:
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Formatted input

❖ Just as how we can format output, we can convert strings 
to binary representation when we read input with scanf

▪ Example converts "134" to 16 bit integer 0000000010000110

❖ There are similar functions to scanf such as sscanf

▪ sscanf takes a string as input for scanning rather than reading 
from the terminal

66

int x;

char* to_scan = "value: 240";

sscanf(to_scan, "value: %d", &x); // sets x to 240
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Input Mismatch

❖ Input may not always match the expected string, function 
will parse as many as it can. Function returns the number 
of arguments successfully decoded

❖ Examples:

67

int x, y;

char* to_scan = "-108 97";

sscanf(to_scan, "%d %d", &x, &y); // returns 2

int x, y;

char* to_scan = "203 wtf";

sscanf(to_scan, "%d %d", &x, &y); // returns 1
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Formatted I/O

68

int float double

printf

Strings: “This is a string 34 -23.456”

scanf

Basic Data types – machine representations


