
CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C, Pointers, Arrays, Strings
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

2

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Logistics

❖ Check-in06 Due Wednesday 11/2 @ 4:59 pm

❖ HW06 (Video Game) Due Friday 11/4 @ 11:59 pm

▪ Should have everything you need after this lecture

❖ Midsemester Survey Due Wednesday 11/9 @ 11:59 pm

❖ HW03 Regrade Requests are open

▪ Close at 11:59 pm Friday 11/4

3

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

4

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CIS 2400

❖ First half of the
course is more
hardware focused

❖ Second Half is from a
more software /
programming
perspective

❖ Later, we will
connect these two
halves

5

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Brief C History

❖ The history of C is closely tied to UNIX

▪ UNIX is an OS family/design, C is a programming language

▪ C was developed alongside UNIX for writing various UNIX utilities
and UNIX was eventually re-written in C. This made UNIX one of
the first Operating Systems not written in just assembly

▪ C allows users to have direct control over memory and expects
most users to have knowledge of the underlying architecture

▪ Unix and C are extremely influential.

• Part of this is due to Bell Labs (where C and UNIX were made) not
being allowed to copyright it. C and UNIX were “Open Source”

• Most OS’s are “Unix-like” (Android OS, Chrome OS, macOS, iOS, Linux)

• Linux is sort of the “successor” of UNIX

6

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C Language family

❖ Many languages adopted similar syntax to C due to it’s
success. (curly braces, function definitions, if/while/for
syntax, variable declarations etc.)

❖ Examples

▪ C (1969)

▪ C++ (1979)

▪ Objective-C (1986)

▪ Perl (1988)

▪ Java (1991)

▪ Javascript (1995)

▪ Rust (2010)

▪ …

7

This means Java code can look very
similar to C code. A lot of C code is
readable if you are comfortable
with Java

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

First C program: Hello World

8

#include <stdio.h>

#include <stdlib.h>

int main() {

printf("Hello World!\n");

return EXIT_SUCCESS;

}

Similar to import statements.
Allows us to use the std I/O and std
library modules of C

Still have a main()
function to indicate
where the program
starts execution.

Function is wrapped in
curly bracesDouble quotes to

indicate a string literal.
parenthesis to call a
function

Return statements

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Second C program: sum evens

9

#include <stdio.h>

#include <stdlib.h>

int sum_evens(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

if (i % 2 == 0) {

sum += i;

}

}

return sum;

}

int main() {

int sum = sum_evens(5);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

Function declarations &
parameters

Variables local to the
function

For loops & if statements look similar

Print statements are different to format output. This replaces
%d with the value of sum, more later in lecture

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Another Similarity: Scope

❖ Variables declared inside of a function are local to that
function and are not visible outside of that scope.

❖ Some older C compilers, like lcc, are picky about how you
initialize variables. Lcc won’t let you initialize variable in a
for loop declaration (for(int i = 0; …) . Newer c
compilers like clang and gcc do not require this.

❖ Variables can also be declared outside of a function –
these variables typically have global scope but there are
some subtleties

10

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C vs Java Similarities Overview

❖ C and Java are very similar syntactically

❖ Similarities:

▪ Control Structures (if/else/for/while/…)

▪ Variables and data types (int/char/float/double/…)

▪ Arrays and strings exist in both
(but are also different implementation wise)

▪ Statements & Expressions
x = (y + z) / 2

▪ Proper functions

11

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C vs Java

❖ C and Java are Syntactically Similar, but …

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

▪ do not assume everything in C is like Java

❖ From my experience, a common source for making
mistakes in C is forgetting that things are not like Java

12

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C vs Java: Differences

❖ C is functionally very different than Java

❖ Some differences:

▪ C doesn’t default initialize anything

▪ C doesn’t have objects

▪ C compiles down to machine code

▪ C runs really fast

▪ C doesn’t check much in terms of safety, no nice error messages
like Java has

▪ C is “just above” assembly in terms of abstraction

▪ C allows for direct memory access

13

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C vs Java: Motivations

❖ Java aims to shield the programmer from the details of
machine, including memory management

▪ Garbage Collection

▪ Default Initialization

❖ C expects you to be intimately familiar with how the
machine works. Allows you to manipulate machine state
directly.

▪ Directly access memory locations

▪ Store and manipulate addresses

▪ Allocate and deallocate resources

14

Today’s topic,

extremely important

in C

Wednesday’s topic

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

15

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Pointers

❖ Variables that store addresses

▪ It stores the address to somewhere in memory

▪ Must specify a type so the data at that address can be interpreted

❖ Generic definition: type* name; or type *name;

▪ Example:

• Declares a variable that can contain an address

• Trying to access that data at that address will treat the data there as
an int

16

int *ptr;

type* name; type *name;

equivalent

POINTERS ARE EXTREMELY

IMPORTANT IN C

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Pointer Operators

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

▪ Can be used to read or write the memory at the address

▪ Example:

❖ Get the address of a variable with &

▪ &foo gets the address of foo in memory

▪ Example:

17

int *ptr = ...; // Assume initialized

int a = *ptr; // read the value

*ptr = a + 2; // write the value

int a = 240;

int *ptr = &a;

*ptr = 2; // ‘a’ now holds 2

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

0x2001 a --

0x2002 b --

0x2003 c --

0x2004 ptr --

Pointer Example

18

int main(int argc, char** argv) {

int a, b, c;

int* ptr; // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers

each fit into a single memory location

Initial values

are garbage

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr --

Pointer Example

19

int main(int argc, char** argv) {

int a, b, c;

int* ptr; // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

x --

p --

0x2001 a 5

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

20

int main(int argc, char** argv) {

int a, b, c;

int* ptr; // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c --

0x2004 ptr 0x2001

Pointer Example

21

int main(int argc, char** argv) {

int a, b, c;

int* ptr; // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

x --

p --

0x2001 a 7

0x2002 b 3

0x2003 c 10

0x2004 ptr 0x2001

Pointer Example

22

int main(int argc, char** argv) {

int a, b, c;

int* ptr; // ptr is a pointer to an int

a = 5;

b = 3;

ptr = &a;

*ptr = 7;

c = a + b;

return 0;

}

Assuming that integers and pointers

each fit into a single memory location

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

23

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

24

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

soln1

soln2

?

?

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

25

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

?

?

soln1

soln2

a

b

c

2.0

4.0

0.0

d ?

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

26

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

?

?

soln1

soln2

a

b

c

2.0

4.0

0.0

d 16.0

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

27

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

0

?

soln1

soln2

a

b

c

2.0

4.0

0.0

d 16.0

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

28

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

solve_quad

soln1

soln2

0.0

-2.0

soln1

soln2

a

b

c

2.0

4.0

0.0

d 16.0

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Output Parameters

❖ Pointers can be used to “return” more than one value
from a function

29

int solve_quadratic(double a, double b, double c,

double* soln1, double* soln2){

double d = b*b – 4 * a * c;

if (d >= 0) {

*soln1 = (-b + sqrt(d)) / (2*a);

*soln2 = (-b - sqrt(d)) / (2*a);

return 1;

} else {

return 0;

}

}

int main(int argc, char** argv) {

double soln1, soln2; // populated by function call

solve_quadratic(2.0, 4.0, 0.0, &soln1, &soln2);

// ...

}

main

soln1

soln2

0.0

-2.0

Red arrow indicate the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

30

❖ What is printed in this program?

pollev.com/tqm

A. 5, 22, 42

B. 42, 42, 37

C. 42, 22, 37

D. 5, 42, 37

E. I’m not sure

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

31

❖ What is printed in this program?

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 22 c 42

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

32

❖ What is printed in this program?

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 22 c

foo

x y z

42

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

33

❖ What is printed in this program?

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 22 c

foo

x y z

42

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

34

❖ What is printed in this program?

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 42 c

foo

x y z

42

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

35

❖ What is printed in this program?

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 42 c

foo

x y z

37

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

36

❖ What is printed in this program?

pollev.com/tqm

void foo(int *x, int *y, int *z) {

x = y;

*x = *z;

*z = 37;

}

int main() {

int a = 5, b = 22, c = 42;

foo(&a, &b, &c);

printf("%d, %d, %d\n", a, b, c);

return EXIT_SUCCESS;

}

main

a 5 b 42 c 37

D. 5, 42, 37

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

37

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Arrays

❖ Definition: type name[size]

▪ Allocates size*sizeof(type) bytes of contiguous memory

▪ Normal usage is a compile-time constant for size
(e.g. int scores[175];)

▪ Initially, array values are “garbage”

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

▪ The programmer will have to store the length in another variable
or hard-code it in

38

type name[size]

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};
▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”
▪ name[index] specifies an element of the array and can be

used as an assignment target or as a value in an expression

▪ Array name (by itself) produces the address of the start of the
array

• Cannot be assigned to / changed

39

int primes[6] = {2, 3, 5, 6, 11, 13};

primes[3] = 7;

primes[100] = 0; // memory smash!

type name[size] = {val0,…,valN};

Optional when initializing

No IndexOutOfBounds

Hope for segfault

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Multi-dimensional Arrays

❖ Generic 2D format:
type name[rows][cols];

▪ Still allocates a single, contiguous chunk of memory

▪ C is row-major

▪ Can access elements with multiple indices

• A[0][1] = 7;

• my_int = A[1][2];

▪ The entries in this array are stored in memory in row major order
as follows:

•A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]

▪ 2-D arrays normally only useful if size known in advance.
Otherwise use dynamically-allocated data and pointers (later)

40

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

41

int sumAll(int a[]) {

int i, sum = 0;

for (i = 0; i < ...???

}

Passes in address of start of array

int sumAll(int* a) {

int i, sum = 0;

for (i = 0; i < ...???

}

Equivalent

❖ Note: Array syntax works on pointers

▪ E.g. ptr[3] = ...;

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Solution: Pass Size as Parameter

42

int sumAll(int* a, int size) {

int i, sum = 0;

for (i = 0; i < size; i++) {

sum += a[i];

}

return sum;

}

❖ Standard idiom in C programs

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Pointer Arithmetic

❖ In LC4, we did arithmetic on addresses to iterate through
arrays. We can do the same in C

▪ :

❖ Pointers are typed

▪ Tells the compiler the size of the data you are pointing to

❖ Pointer arithmetic is scaled by sizeof(*ptr)

▪ Sometimes a single array element
can span multiple addresses

▪ Works nicely for arrays
43

Size (number of bytes) of

thing being pointed at

double my_array[10]; // create an array of 10 doubles

double *ptr = my_array; // ptr has the address of the

// first element

ptr = ptr + 1; // increment ptr to point to

// the next elemetnt

ptr[2] = 3.14; // equivalent to *(ptr + 2) = 3.14

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Pointer Square Brackets

❖ We can use the “array syntax” on pointers

❖ This syntax is the same as

❖ Fun Fact, these are all the same in C:

44

ptr[3] = ...;

*(ptr + 3) = ...;

*(ptr + 3) = ...;

*(3 + ptr) = ...;

3[ptr] = ...;

ptr[3] = ...;

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

45

❖ What are the final values of nums?

pollev.com/tqm

A. 2, 3, 5, 6

B. 38, 38, 5, 6

C. 2, 38, 5, 2

D. 2, 38, 5, 5

E. I’m not sure

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

46

❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

2 3 5 6

nums

ptr

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

47

❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

2 0 5 6

nums

ptr

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

48

❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

2 0 5 6

nums

ptr

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

49

❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

2 38 5 6

nums

ptr

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

50

❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

2 38 5 6

nums

ptr

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

CMOS Examples #1

51

❖ What are the final values of nums?

pollev.com/tqm

int nums[4] = {2, 3, 5, 6};

int *ptr = nums;

ptr[1] = 0;

ptr++;

ptr[0] = 38;

ptr++;

ptr[1] = nums[0];

2 38 5 2

nums

ptr

C. 2, 38, 5, 2

Red arrow indicates the
NEXT line to execute

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

52

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Strings without Objects

❖ Strings are central to C, very important for I/O

❖ In C, we don’t have Objects but we need strings

❖ If a string is just a sequence of characters, we can have
use array of characters as a string

❖ Example:

53

char str_arr[] = "Hello World!";

char *str_ptr = "Hello World!";

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Null Termination

❖ Arrays don’t have a length, but we mark the end of a
string with the null terminator character.
▪ The null terminator has value 0x00 or '\0'

▪ Well formed strings MUST be null terminated

❖ Example:

▪ Takes up 6 characters, 5 for “Hello” and 1 for the null terminator

54

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

DO NOT FORGET THIS. THIS IS

THE CAUSE OF MANY BUGS

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

String library Functions

❖ Many Library functions are provided for processing strings

❖ Most are found in the header file <string.h>

▪ strlen(char* str)– returns the number of characters in
the string excluding the null terminator.

▪ strcpy(char *s1, char *s2)- copies the string in s2 into
s1. Assumes that s1 has enough space to store the copy.

▪ strcmp(char *s1, char *s2) – compares two strings
and returns < 0 if s1 < s2, > 0 if s1 > s2 and 0 if they are the same
string

55

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

More Library functions

❖ There are also other useful functions defined in
<ctypes.h>
▪ isalnum(int c) returns non-zero if c is an alphanumeric

character

▪ isspace(int c) returns non-zero if c is a space character

▪ tolower(int c) if c is an uppercase letter, returns the
lowercase counterpart. If c is not an uppercase letter, c is
returned.

❖ There are more functions that exist that you may find
useful.

56

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

C Standard Library

❖ Not as big as Java standard libraries but has many useful
functions.

❖ Don’t reinvent something that already exists

❖ Examples:
▪ stdio.h useful for I/O, printing, reading input, etc.

▪ ctypes.h functions for converting and testing char’s

▪ math.h mathematical functions (pow, sqrt, etc.)

▪ stdlib.h general purpose functions

▪ string.h functions for using strings

57

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Lecture Outline

❖ Intro to C

❖ Pointers

❖ Arrays

❖ Strings

❖ Formatted I/O

▪ printf & scanf

58

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatted I/O

❖ Many programs need to convert between the bit values a
computer manipulates and something a human can read

▪ Example: converting between the binary encoding for an int into
readable string

❖ Often done by the following functions or variants of them
▪ printf

• Prints a formatted string to the console

▪ scanf

• Reads a formatted string from the console

59

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatted I/O

❖ Remember that EVERYTHING is stored as bits.

❖ Do not confuse what you read on the terminal with the
actual representation of data in memory

❖ Converting bits to be human readable is a big part of
formatted output

60

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatting Example

❖ Do you recognize the following 32 bit single precision
value?:

▪ 01000000010010010000111111011011

❖ Let’s run a number to string procedure to convert it into
sequence of ASCII characters

▪ 0x33, 0x2E, 0x31, 0x34, 0x31, 0x35, 0x39

❖ What about now?

▪ 3.14159

61

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Another Formatting Example

❖ Recognize the following 16 bit 2C integer value?

▪ 1111001001110001

❖ Here are the ASCII characters in its decimal representation

▪ 0x2D, 0x33, 0x34, 0x37, 0x30

❖ Here is what it would look like printed out.

▪ -3470

62

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatting Strings

❖ To specify how bits should be interpreted for printing and
scanning. We must use a format string

❖ A format string is just a string with formatting specifiers:
▪ %d – a decimal integer value

▪ %x – a hexadecimal value

▪ %s – a string

▪ %f – a floating point value

❖ For printf- these formatting subsequences may be
accompanied by field width and precision specifiers
▪ %12.3f – prints a floating-point number using 12 characters

with three digits after the decimal place

63

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Special Characters

❖ There are also special characters that can show up in any
string which have special meaning
▪ '\n' : newline character

▪ '\t' : tab character

64

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatting Printing Example

65

int main(int argc, char** argv) {

int a = 27;

double b = 3.14159;

// simple string output with a newline at the end

printf("Hello World\n");

// formatted output that will perform

// numerical conversions

printf("a = %d, b = %7.3f\n", a, b);

}

Hello World

a = 27, b = 3.142

Outputs:

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatted input

❖ Just as how we can format output, we can convert strings
to binary representation when we read input with scanf

▪ Example converts "134" to 16 bit integer 0000000010000110

❖ There are similar functions to scanf such as sscanf

▪ sscanf takes a string as input for scanning rather than reading
from the terminal

66

int x;

char* to_scan = "value: 240";

sscanf(to_scan, "value: %d", &x); // sets x to 240

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Input Mismatch

❖ Input may not always match the expected string, function
will parse as many as it can. Function returns the number
of arguments successfully decoded

❖ Examples:

67

int x, y;

char* to_scan = "-108 97";

sscanf(to_scan, "%d %d", &x, &y); // returns 2

int x, y;

char* to_scan = "203 wtf";

sscanf(to_scan, "%d %d", &x, &y); // returns 1

CIS 2400, Fall 2022L15: C, Pointers, Arrays, StringsUniversity of Pennsylvania

Formatted I/O

68

int float double

printf

Strings: “This is a string 34 -23.456”

scanf

Basic Data types – machine representations

