
CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Makefiles & File I/O
Intro to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Poll: Familiarity File I/O?

2

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Upcoming Due Dates

❖ HW07 (Deque & RPN) Due Friday 11/11 @ 11:59 pm

❖ Check-in08: Due Monday 11/14 @ 4:59 pm

▪ Releases Tomorrow

❖ HW08 (Disassembler) Due Friday 11/18 @ 11:59 pm

▪ Should have everything you need after this lecture
(or Monday’s lecture)

❖ Assignments will very likely take increasingly longer to
complete. Please try to not let the work accumulate

3

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Lecture Outline

❖ Makefiles

❖ Command Line Args

❖ File I/O

❖ Binary files & Endianness

4

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

make

❖ make is a classic program for controlling what gets
(re)compiled and how
▪ Many other such programs exist (e.g., ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and
narrow), let’s focus more on the concepts…

5

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Building Software

❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time: 😭

• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script: 🙂

• Have a Makefile: 😊 (you’re ahead of us)

6

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

“Real” Build Process

❖ On larger projects, you can’t or don’t want to have one big (set
of) command(s) that are all run every time you change
anything. To do things “smarter,” consider:
1) It could be worse: If gcc didn’t combine steps for you, you’d need to

preprocess, compile, and link on your own (along with anything you
used to generate the C files)

2) Source files could have multiple outputs (e.g., javadoc). You may
have to type out the source file name(s) multiple times

3) You don’t want to have to document the build logic when you
distribute source code; make it relatively simple for others to build

4) You don’t want to recompile everything every time you change
something (especially if you have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but
4 is trickier

7

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Recompilation Management

❖ The “theory” behind avoiding unnecessary compilation is
a dependency dag (directed, acyclic graph)

❖ To create a target 𝑡, you need sources 𝑠1, 𝑠2, … , 𝑠𝑛 and a
command 𝑐 that directly or indirectly uses the sources

▪ If 𝑡 is newer than every source (file-modification times), assume
there is no reason to rebuild it

▪ Recursive building: if some source 𝑠𝑖 is itself a target for some
other sources, see if it needs to be rebuilt…

▪ Cycles “make no sense”!

8

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

9

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.o

bar Executable

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Theory Applied to C

❖ Compiling a .c creates a .o – the .o depends on the .c
and all included files (.h, recursively/transitively)

❖ Creating an executable (“linking”) depends on .o files

10

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.o

bar Executable

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Theory Applied to C

❖ If one .c file changes, just need to recreate one .o file,
maybe a library, and re-link

❖ If a .h file changes, may need to rebuild more

❖ Many more possibilities!

11

Source files

Object files

foo.c bar.cfoo.h

foo.o bar.o

bar Executable

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

make Basics

❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

12

foo.o: foo.c foo.h bar.h

gcc -Wall -o foo.o -c foo.c

target: sources

command← Tab →

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Using make

❖ Defaults:
▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the makefile, then process it recursively

• If some source does not exist, then error

• If any source is newer than the target (or target does not exist), run
command (presumably to update the target)

13

bash$ make <target>

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

“Phony” Targets

❖ A make target whose command does not create a file of
the target’s name (i.e., a “recipe”)

▪ As long as target file doesn’t exist, the command(s) will be
executed because the target must be “remade”

❖ e.g., target clean is a convention to remove generated
files to “start over” from just the source

❖ e.g., target all is a convention to build all “final
products” in the makefile

▪ Lists all of the “final products” as sources

14

clean:

rm foo.o bar.o baz.o widget *~

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

“all” Example

15

all: prog B.class someLib.a

notice no commands this time

prog: foo.o bar.o main.o

gcc –o prog foo.o bar.o main.o

B.class: B.java

javac B.java

someLib.a: foo.o baz.o

ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h

gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

1

2

3

4

5 6

7 8

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Makefile Writing Tips

❖ When creating a Makefile, first draw the dependencies!!!!

❖ C Dependency Rules:
▪ .c and .h files are never targets, only sources.

▪ Each .c file will be compiled into a corresponding .o file

• Header files will be implicitly used via #include

▪ Executables will typically be built from one or more .o file

❖ Good Conventions:
▪ Include a clean rule

▪ If you have more than one “final target,” include an all rule

▪ The first/top target should be your singular “final target” or all

16

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

17

speak.cspeak.h shout.cshout.hmain.c

#include "speak.h"

#include "shout.h"

int main(int argc, char** argv) {…

#include "speak.h"

...

#include "speak.h"

#include "shout.h"

...

main.c

speak.c

shout.c

speak.o shout.omain.o

talk

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

talk: main.o speak.o shout.o

gcc –g –Wall –o talk main.o speak.o shout.o

main.o: main.c speak.h shout.h

gcc –g -Wall –c main.c

speak.o: speak.c speak.h

gcc –g -Wall –c speak.c

shout.o: shout.c speak.h shout.h

gcc –g -Wall –c shout.c

clean:

rm talk *.o

Writing a Makefile Example

❖ “talk” program (find files on web with lecture slides)

18

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

make Variables

❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or
whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

• It’s common to use variables to hold lists of filenames

▪ Can also specify/overwrite variables on the command line:
(e.g., make CC=clang CFLAGS=-g) 19

CC = gcc

CFLAGS = -Wall -std=c17

OBJFILES = foo.o bar.o baz.o

widget: $(OBJFILES)

$(CC) $(CFLAGS) -o widget $(OBJFILES)

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Revenge of the Funny Characters

❖ Special variables:
▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

20

CC and CFLAGS defined above

widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^

foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

And more…

❖ There are a lot of “built-in” rules – see documentation

❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even
whole scripts!

❖ You can repeat target names to add more dependencies

❖ Often this stuff is more useful for reading makefiles than
writing your own (until some day…)

21

%.class: %.java

javac $< # we need the $< here

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Lecture Outline

❖ Makefiles

❖ Command Line Args

❖ File I/O

❖ Binary files & Endianness

22

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Executing a C program

❖ The Command Line: receives commands from a user in
the form of lines of text

❖ The “Terminal” in ubuntu runs a command line for us to
run various commands.

▪ Commands you may have seen before:

• D

• D

• D

▪ Can also run user written programs:

• D

• d
23

$ cd ~/Desktop

$ tar –xvf hw6.tar

$ java –jar Pennsim.jar

$./my_program

$./test_suite

$ often used

to indicate

that the

terminal is

ready for

another

command First string specifies the program/command name

Following strings specify

the inputs/options for the

command/program

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

▪ argv is an array containing pointers to the arguments as strings

(more on pointers later)

❖ Example: $./my_program hello 87

▪ argc = 3

▪ argv[0]="./my_pogram", argv[1]="hello",
argv[2]="87"

C Syntax: main

int main(int argc, char* argv[])

24

C String

= char** argv

Arrays in C are not objects, don’t have ‘.length’

Advantages: Simple (terminal takes chars)

& flexible (can take in any number of args)

Disadvantages: Input checking &

data conversion needed.

Should we treat as string or number?

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Command Line Args Demo

❖ Code on the course website: print_args.c

25

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Lecture Outline

❖ Makefiles

❖ Command Line Args

❖ File I/O

❖ Binary files & Endianness

26

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Files Purpose

❖ So far, we have talked about memory, which is often a
type of “volatile storage”

▪ Volatile storage: requires power to maintain the data values. Loss
of power = loss of data

▪ Program memory is also deallocated at the end of the program.
To get those values again, the program to compute them must be
run again

❖ Files: a type of permanent/long-term “non-volatile”
storage

▪ Non-volatile: retains data when the power is turned off

▪ Long-term: holds data that exists beyond the lifetime of a
program

27

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

File: Examples

❖ You’ve already been interacting with files (maybe not
through programs yet though)

❖ Program files: (.c/.asm/.obj/etc.) are modified and persist
between program executions.

▪ While these contain information about how a program is setup, it
doesn’t contain all of program memory, which will change as the
program executes

❖ Editors (sublime/IntelliJ/vim/PowerPoint/etc.) are
programs that read and modify files based on user input

28

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

File Interface Metaphor: Tape Drives

❖ Programs usually interact with files following a similar file
interface:

❖ Functions that model a sequential access device like
magnetic tape drives

29

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

File Interface Metaphor: Tape Drives

❖ Open a file for reading or writing

▪ (usually starting at the beginning of the file)

❖ Read/Write the file

▪ Each read/write advances the number of bytes read or written

❖ Rewind: start at
beginning again

❖ others

30

Data already read
Remaining data

in the file

Current position

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

File Interface Metaphor: Streams

❖ Another (more modern) abstraction is to think of I/O in
terms of “streams”

❖ Stream:

▪ A sequence of bytes that flows to and from a device

▪ We do not have access to whole file at once (some files are too
big to fit inside of memory easily)

31

... ...

Current position into the sequence

Next bytes to read

This ends up working sort of like an iterator over the file.

Where we can read current data, and/or insert new data

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

C Stream Functions (1 of 3)

❖ Some stream functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);

• Opens a stream to the specified file in specified file access mode

▪ int fclose(stream);

• Closes the specified stream (and file)

▪ int fprintf(stream, format, ...);

• Writes a formatted C string

– Like printf(...); but for files

▪ int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

32

FILE* fopen(filename, mode);

int fclose(stream);

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

Returns NULL on error Do we create a new file if it doesn’t exist?
Are we reading the file?
Are we writing the file?

a FILE* returned by fopen

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

C Stream Functions (2 of 3)

❖ Some stream functions (complete list in stdio.h):

▪ int fprintf(stream, format, ...);

• Writes an array of count elements of size bytes from ptr to stream

▪ int fscanf(stream, format, ...);

• Reads an array of count elements of size bytes from stream to ptr

33

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

Pointer to the start of elements
in memory to write to file

Size of an
element

Number of
elements FILE*

Returns number of
elements actually
read/written ptr

"Array"

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

C Stream Functions (3 of 3)

❖ Some stream functions (complete list in stdio.h):

▪ int fprintf(stream, format, ...);

• Reads one character (one byte)

▪ int fscanf(stream, format, ...);

• Prints one character (one byte)

▪ Fgets

• Reads a string from the strearm into the string str. Reads N
characters or until a newline character (or end of file).

34

int fgetc(FILE* stream);

int fputc(char c, FILE* stream);

char* fgets(char* str, int n, FILE* stream);

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

C Stream Error Checking/Handling

❖ Some error functions (complete list in stdio.h):

▪ int ferror(stream);

• Checks if the error indicator associated with the specified stream is
set

▪ void clearerr(stream);

• Resets error and EOF indicators for the specified stream

▪ void perror(message);

• Prints message followed by an error message related to errno to
stderr

35

int ferror(stream);

int clearerr(stream);

void perror(message);

Extra information

Global variable

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Terminal input/output

❖ C defines three file streams for terminal input/output

▪ Defined in <stdio.h>

▪ Opened at program start by default

▪ stdin: standard input (console)

▪ stdout: standard output (console, for normal output)

▪ stderr: standard error (console, for error output)

❖ The following are equivalent:

36

printf("Hello World!\n");

fprintf(stdout, "Hello World!\n");

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Demo: copy file program

❖ Well Written file posted on website as copy_file.c

❖ Things to do when dealing with C stream I/O:

▪ Eventually we will hit the end of file, need to handle that

▪ Must ask for an amount of bytes/elements to be read.
Best practice is to request for a chunk of bytes/elements at a time
(e.g. 100 or so)

37

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Other Functions

❖ Many other functions not covered in lecture (not enough
time). Feel free to look up others and use them

❖ Some examples:
▪ int feof(FILE* f);

• check for end of file

▪ void rewind(FILE *f);

• start back at the beginning of file

▪ long ftell(FILE* f);

• gives the current position into the file

▪ int fseek(FILE* f, long offset, int whence);

• Reposition where we are in the file

38

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Lecture Outline

❖ Makefiles

❖ Command Line Args

❖ File I/O

❖ Binary files & Endianness

39

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Binary files & Serialization

❖ So far this lecture has implicitly assumed we are working
with files that hold text (characters)

❖ Binary files also exist where data isn’t stored as
characters. (.obj files are an example)

❖ Some data/data-structures make more sense to be stored
in binary through a process called serialization.

40

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Serialization Example:

❖ Posted on course website

▪ read_floats.c

▪ write_floats.c

❖ Notes:

▪ Don’t have to read/write an array, can read/write only one
“element”

▪ Trying to open these files in an editor will not be readable

41

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Endianness

❖ In other architectures, there is one byte at each address
location

▪ For multi-byte data, how do we order it in memory?

▪ Data should be kept together, but what order should it be?

▪ Example, store the 4-byte (32-bit) int:
0x A1 B2 C3 D4

❖ The order of the bytes in memory is called endianness

▪ Big endian vs little endian

42

Most significant Byte Least significant Byte

Each byte has its own address

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Endianness

❖ Consider our example 0x A1 B2 C3 D4

❖ Big endian

▪ Least significant byte has highest address

▪ Looks the most like what we would read

▪ The standard for storing information on files/the network

❖ Little Endian

▪ Least significant byte has lowest address

▪ What your VM probably uses

43

Most significant Byte Least significant Byte

0x2000 0x2001 0x2002 0x2003

A1 B2 C3 D4

0x2000 0x2001 0x2002 0x2003

D4 C3 B2 A1

Least significant Byte

Note how the hex digits

within a byte are still in the

same order

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

44

Practice Question pollev.com/tqm

A. 5

B. 10

C. 3

D. 6

E. I’m not sure

int num = 0xCADEDADA;

CA DE DA DA

DA DA DE CA

AC ED AD AD

AD AD ED AC

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

45

Practice Question pollev.com/tqm

A. 5

B. 10

C. 3

D. 6

E. I’m not sure

int num = 0xCADEDADA;

CA DE DA DA

DA DA DE CA

AC ED AD AD

AD AD ED AC

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Endianness: Why it matters

❖ Since machines may store things in different byte
orderings, it causes problems when they share files or
communicate over the network.

❖ A standard ordering is used for storing binary data, big
endian (often called Network ordering).

❖ Need to make sure that we store bytes in network byte
ordering when we serialize data

46

CIS 240, Fall 2022L18: Makefiles & File I/OUniversity of Pennsylvania

Endianness functions

❖ There are some functions out there that convert byte
orderings
▪ htons() -> Host to Network short (16 bits)

• Converts from Host byte ordering to network byte ordering

▪ ntohs() -> Network to Host short (16 bits)

• Converts from network byte ordering to host byte ordering

❖ “Network byte order” is big endian. Your “host” machine
is little endian

❖ More info in <arpa/inet.h>

▪ Variants also exist for 32 bit and 64 bit conversion

47

