
CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java and C tips
Intro to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Upcoming Due Dates

❖ HW10/11 (J compiler) is due Friday December 9th

▪ HW10 & 11 make up a 2-part assignment that take a while to
complete.

▪ Recitation for this assignment has been VERY helpful

▪ Can grant extensions on this, but there will be reduced office
hours and Ed activity after a bit

▪ Took some students a long time in Fall 2021

❖ Final Exam: Thursday December 15th

▪ Cumulative

▪ More info coming soon

2

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

J Compiler Common Mistakes

❖ DON’T FORGET TO ADD HEADER GUARDS

❖ next_token

▪ When you read a comment, don’t forget to read till the rest of the
line

❖ ASM generation:

▪ Some 16-bit LITERALs require both CONST and HICONST to load
that value into a register

▪ The prologue/epilogue is wrong, you can mostly copy this off of
the slides though.

▪ Generating unique labels/handling nested control structures

3

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice

5

None of this is on

the final exam or

HW10/HW11

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Comparing Java and C

❖ Perquisite to this course: CIS 1100

▪ You all have experience programming in Java

▪ Java the first language for most of you

❖ "The Hardest programming language you learn is the
second one that you learn."

▪ May not fully be true, but it is common to struggle with the
differences between the languages

▪ Doesn’t help that C and Java look VERY similar

❖ Hopefully this comparison gives you a better
understanding of both Java and C

6

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Disclaimer

❖ Java and C both can have multiple implementations.

▪ Some things we discuss in this lecture may not be guaranteed, but
instead may vary.

❖ C: Leaves some details that can vary from machine to
machine and/or compiler to compiler
▪ Example: what is the size and sign of the char datatype?

▪ Example: What happens when we return the address of data in
the current stack frame?

❖ Java: the language specification provides an abstraction

▪ We can understand how the code should behave, but it may do
things differently when actually compiled & run

7

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Primitives

❖ Primitive types are pretty much the same as C
▪ int, float, double, etc.

▪ Java doesn’t have unsigned types to avoid issues with
converting & comparing between signed/unsigned types

❖ char:

▪ char in C is 1-byte which represents an ASCII character

▪ char in Java is 2-bytes for 2-byte Unicode characters

❖ Primitive Size:

▪ Java is designed to be portable, primitives are fixed in size

▪ C primitive sizes can vary from machine to machine

▪ Example: int is 4-bytes in Java, and is usually 4-bytes in C
8

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Pointers

❖ Pointers are a type of primitive in C. Can be used to access
memory but we can also deal with the address directly
(pointer arithmetic, get address of with &)

❖ Java has references, which are almost like "protected" or
"hidden" pointers.

▪ All Object variables are actually Object References

▪ Much more constrained in how you use them to try and minize
possible memory usage errors

❖ Both have NULL or null to indicate an unused/empty
pointer/references. (NULL typically represented as 0)

9

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Objects

❖ C doesn’t have true Objects, but code can have "objects"
or structs. This data can exist in many places in memory.

❖ Java has Object support. All objects in Java are stored on
the heap. The "new" keyword allocates memory
dynamically, like how malloc allocates space.

10

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Objects Example

❖ Consider we have a struct Point in C and object Point
in Java. Each contains two integers, an X and a Y.

11

int main() {

Point p;

p.x = 240;

p.y = 595;

}

public static void main(String args[]) {

Point p;

p.x = 240;

p.y = 595;

}

C Java

Point p;

Stack frame for
main()

x = 240

y = 595

NULL POINTER EXCEPTION

Point p is an uninitialized references
(an uninitialized pointer)

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Objects Example

❖ Consider we have a struct Point in C and object Point
in Java. Each contains two integers, an X and a Y.

12

int main() {

Point p;

p.x = 240;

p.y = 595;

}

public static void main(String args[]) {

Point p = new Point();

p.x = 240;

p.y = 595;

}

C Java

Point p;

Stack frame for
main()

x = 240

y = 595

Point p; Stack frame for
main()

Stack: C Stack: Java Heap: Java

x = 240

y = 595

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

C Objects Heap Example

❖ C can also have “references” to things on the heap, but it
is more explicit in the code

13

int main() {

Point* p = malloc(sizeof(Point));

p->x = 240;

p->y = 595;

}

C

Point* p; Stack frame for
main()

Stack: C Heap: C

x = 240

y = 595

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Arrays

❖ C Arrays:

▪ elements are garbage by default

▪ Length not stored

▪ Does not check bounds when accessing array

❖ Java Arrays:
▪ elements are initialized to 0 or null

▪ Length stored as an immutable field at start of the array

▪ Every access to the array does a bounds check, throwing an
exception if the index is illegal

14

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Arrays in Memory

❖ Example Code:

15

int main() {

int array[5];

}

public static void main(String args[]) {

int[] array = new int[5];

}

C Java

array

Stack frame for
main()

Stack: C

?? ?? ?? ?? ??

array Stack frame for
main()

Stack: Java Heap: Java

5 0 0 0 0 0

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Strings

❖ C strings:

▪ ASCII Characters

▪ Pretty much an array of characters

▪ Null terminated

▪ Can be modified

❖ Java strings:

▪ Unicode Characters

▪ An Object

▪ Bounded by length like arrays in Java (with a 4-byte int field)

▪ Are immutable

16

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Java Data Types: Strings in Memory

17

int main() {

char str[3] = "Hi";

}

public static void main(String args[]) {

String str = new String("Hi");

}

C Java

str

Stack frame for
main()

Stack: C

H i \0
str Stack frame for

main()

Stack: Java Heap: Java

02 00 00 00 48 00 69 00

Byte level view

4-byte int

length

2-byte

chars

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice

18

None of this is on

the final exam or

HW10/HW11

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Compilation

❖ In this class, we’ve walked through the C compilation
Process

▪ C codes is compiled into assembly instructions

▪ Assembly instructors are assembled into machine code

❖ At run-time, machine Code Is loaded directly into program
memory and run directly on the processor

19

C code

ASM

Machine Code

(binary)

Executable

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Interpreters

❖ There exist other ways for programming languages to run
on a computer. A common method is using interpreters

▪ Python, Lisp, Javascript, etc.

❖ The interpreter is a program that runs directly on the
processor, reads your code, and interprets how to
emulate the execution of your code.

20

InterpreterSource Code

Reads source code

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Intermediate Formats

❖ Some languages are not read directly by the interpreter
and instead are translated to some intermediary format

▪ When we compile Java code, we are compiling from Java to Java
bytecode

❖ Byte code provides an easier format for the interpreter to
read our code

❖ Java bytecode can be used to implement other
programming languages,

▪ Kotlin, Scala, etc

21

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Usual Java Compilation

❖ Java code is first compile to Java bytecode by a java
compiler

❖ Java Byte code is then run on the Java Virtual Machine
(JVM) which acts sort of like a Java bytecode interpreter

❖ There are other ways to compile and run Java and there
are many optimizations that can be made to

22

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

JIT

❖ Just In Time (JIT) compilation

▪ The interpreter/run-time environment will compile some
bytecode into machine code while the program is running to try
and execute the code faster.

❖ Translating to machine code has some overhead cost,
especially if the code translation is complex or there are a
lot of checks for optimization

❖ Some interpreters/environments will try to analyze the
code to see which parts of bytecode is worth translating
to machine code

23

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Interpreters VS Compilers

❖ Interpreters make it easier to run on different
architectures since the environment of the program is
controlled by the interpreter

❖ Interpreters usually have deep connection to a debugger,
making development of a debugger easier

❖ Allow for a garbage collector to implicitly work while the
program is running

❖ Interpreters have more overhead cost than compiled
languages and run slower

❖ Some languages aren’t clearly interpreted or compiled

24

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice

25

None of this is on

the final exam or

HW10/HW11

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Garbage Collection

❖ Garbage Collection:

▪ automatically deallocates memory on the heap.

❖ Commonly used in many programming Languages:

▪ Java, C#, Go, Javascript, Ruby, Julia, …

❖ Requires some overhead to check and see what memory
can be deallocated and which is still being used

❖ Many implementations and optimizations on garbage
collection

26

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Trace Garbage Collection

❖ To decide which memory can be deallocated, garbage
collectors often trace memory to see which memory is
still "reachable" by the user program.

❖ The garbage collector keeps track of all allocations and
can draw memory references & allocations like a directed
graph

27

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Trace Garbage Collection

❖ We start with a set of allocations we know are reachable
and call these Root Nodes (usually these are held as
references in local variables still on the stack)

28

Root Nodes

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Trace Garbage Collection

❖ We start with a set of allocations we know are reachable
and call these Root Nodes (usually these are held as
references in local variables still on the stack)

❖ We then trace through all references. Anything
referenced from a reachable node is reachable.

29

Root Nodes

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice

30

None of this is on

the final exam or

HW10/HW11

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

C: Common Mistakes

❖ The most common mistakes I notice in office hours
teaching usually deal with handling memory:

▪ How parameters are passed

▪ Using Output parameters

▪ Exceeding the bounds of an array

▪ Issues with deallocating memory

31

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

C is Call-By-Value

❖ C (and Java) pass arguments by value

▪ Callee receives a local copy of the argument

• Register or Stack

▪ If the callee modifies a parameter, the caller’s copy isn’t modified

32

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

33

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

Note: Arrow points
to next instruction.

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

34

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

35

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7

swap
a 42 b -7

tmp ??

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

36

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7

swap
a 42 b -7

tmp 42

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

37

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42

swap
a -7 b -7

tmp 42

b -7

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

38

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42

swap
a -7 b 42

tmp 42

b -7

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Broken Swap

39

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Faking Call-By-Reference in C

❖ Can use pointers to approximate call-by-reference

▪ Callee still receives a copy of the pointer (i.e. call-by-value), but it
can modify something in the caller’s scope by dereferencing the
pointer parameter

40

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Fixed Swap

41

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

Note: Arrow points
to next instruction.

main a 42 b -7

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Fixed Swap

42

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a 42 b -7

swap
a b

tmp ??

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Fixed Swap

43

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a 42 b -7

swap
a b

tmp 42

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Fixed Swap

44

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a -7 b -7

swap
a b

tmp 42

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Fixed Swap

45

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a -7 b 42

swap
a b

tmp 42

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Fixed Swap

46

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a -7 b 42

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ What does this code print?

47

typedef struct point_st {

int x, y;

} Point;

void increment_point(Point p) {

p.x++;

p.y++;

}

int main() {

Point p = {1, 5};

increment_point(p);

printf("x: %d y: %d\n", p.x, p.y);

}

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ What does this code print?

48

typedef struct point_st {

int x, y;

} Point;

void increment_point(Point p) {

p.x++;

p.y++;

}

int main() {

Point p = {1, 5};

increment_point(p);

printf("x: %d y: %d\n", p.x, p.y);

}

This code prints “x: 1, y: 5”

Structs are
passed by
value

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem: Fixed

❖ Fixed code that uses pointers to simulate
pass-by-reference

49

typedef struct point_st {

int x, y;

} Point;

void increment_point(Point* p) {

p->x++;

p->y++;

}

int main() {

Point p = {1, 5};

increment_point(&p);

printf("x: %d y: %d\n", p.x, p.y);

}

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ What is wrong with this code?

50

#define LINE_LEN 250

int main() {

FILE* f = fopen("Hi.txt", "r");

if (f == NULL)

return EXIT_FAILURE;

char buf[10];

while(fread(buf, sizeof(char), LINE_LEN, f)) {

printf("%s", buf);

}

fclose(f);

return EXIT_SUCCESS;

}

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ What is wrong with this code?

51

#define LINE_LEN 250

int main() {

FILE* f = fopen("Hi.txt", "r");

if (f == NULL)

return EXIT_FAILURE;

char buf[10];

while(fread(buf, sizeof(char), LINE_LEN, f)) {

printf("%s", buf);

}

fclose(f);

return EXIT_SUCCESS;

}

buf only has space for 10 characters,
but fread tries to read 250!

This causes stack smashing,
program probably crashes

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ What is printed by this code?

52

int main() {

uint16_t i = 0;

for (i = 0; i < 65536; i++) {

printf("%d ", i);

}

return EXIT_SUCCESS;

}

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ What is printed by this code?

53

int main() {

uint16_t i = 0;

for (i = 0; i < 65536; i++) {

printf("%d ", i);

}

return EXIT_SUCCESS;

}

Code goes infinite!
i is of type uint16_t which only has
a max value of 65535!

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Practice Problem:

❖ Similar Issue with unsigned types:

54

int main() {

uint16_t i;

for (i = 120; i >= 0; i--) {

printf("%d ", i);

}

return EXIT_SUCCESS;

}

i never becomes negative, so the loop
condition always evaluates to true

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

55

❖ What is wrong with this program?

▪ (ignoring style issues)

#include "pair.h"

#include <stdio.h>

void Pair_Allocate(pair *out) {

out = (pair *) malloc(sizeof(pair))

out->x = 0;

out->y = 0;

}

void Pair_Print(pair *p) {

printf("(x:%d, y:%d)", p.x, p.y);

}

#include "pair.h"

#include "util.h"

int main(){

pair * p;

Pair_Allocate(p);

p->x = FOO;

p->y = 595;

Pair_Print(*p);

}

util.h

main.c

pair.h

Buggy Program

#define FOO 240

typedef struct pair_st {

int x, y;

} pair;

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

#define FOO 240

typedef struct pair_st {

int x, y;

} pair;

56

❖ What is wrong with this program?

▪ (ignoring style issues)

#include "pair.h"

#include <stdio.h>

void Pair_Allocate(pair *out) {

out = (pair *) malloc(sizeof(pair))

out->x = 0;

out->y = 0;

}

void Pair_Print(pair *p) {

printf("(x:%d, y:%d)", p.x, p.y);

}

#include "pair.h"

#include "util.h"

int main(){

pair * p;

Pair_Allocate(p);

p->x = FOO;

p->y = 595;

Pair_Print(*p);

}

util.h

main.c

pair.h
No header guards!

Output parameter

misuse

Needs to use ->

syntax

Memory leak

Shouldn’t

Dereference

Buggy Program

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Low Level Programming Review

❖ Complete the function "rand_string", which generates a
random string of random length. Assume we have the
following functions available to you:

▪ int rand_len();

// returns a random int in the range of 1 – 256

▪ char rand_char();

// returns a random printable character

// (no '\0' or other special characters)

❖ If you finish, write a small main function that calls
rand_string and prints out the string

57

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Low Level Programming Review

58

// returns a random string and its length. Returns -1 on error

int rand_string(char **output) {

// generate random length

int len = rand_len();

// allocate space for the string (+1 for null terminator)

char* result = (char *) malloc((len+1)*sizeof(char));

// error checking

if (result == NULL)

return -1;

// assign random characters

for (int i = 0; i < len; i++)

result[i] = rand_char();

// add null terminator

result[len] = '\0';

// return results

*output = result;

return len;

}

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

Low Level Programming Review

59

int main() {

char* str;

// generate random string

int len = rand_string(&str);

if (len == -1)

return EXIT_FAILURE;

printf("%s\n", str);

free(str);

return EXIT_SUCCESS;

}

CIS 2400, Fall 2022L23: Java vs C, C TipsUniversity of Pennsylvania

C Tips: Ownership

❖ In C and C++, there is no garbage collector and instead the
programmed has to manage memory
allocation/deallocation themselves.

❖ To help reason about code, try to think of who has the
"Ownership" or "Responsibility" to free code and who is
just "Borrowing" memory.

❖ In the previous example, the comment for
rand_string should say something like "The caller is
responsible for freeing the resulting string"

60

