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Upcoming Due Dates

❖ HW10/11 (J compiler) is due Friday December 9th

▪ HW10 & 11 make up a 2-part assignment that take a while to 
complete.

▪ Recitation for this assignment has been VERY helpful

▪ Can grant extensions on this, but there will be reduced office 
hours and Ed activity after a bit

▪ Took some students a long time in Fall 2021

❖ Final Exam: Thursday December 15th

▪ Cumulative

▪ More info coming soon
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J Compiler Common Mistakes

❖ DON’T FORGET TO ADD HEADER GUARDS

❖ next_token

▪ When you read a comment, don’t forget to read till the rest of the 
line

❖ ASM generation:

▪ Some 16-bit LITERALs require both CONST and HICONST to load 
that value into a register

▪ The prologue/epilogue is wrong, you can mostly copy this off of
the slides though.

▪ Generating unique labels/handling nested control structures
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Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice
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None of this is on 

the final exam or 

HW10/HW11
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Comparing Java and C

❖ Perquisite to this course: CIS 1100

▪ You all have experience programming in Java

▪ Java the first language for most of you

❖ "The Hardest programming language you learn is the 
second one that you learn."

▪ May not fully be true, but it is common to struggle with the 
differences between the languages

▪ Doesn’t help that C and Java look VERY similar

❖ Hopefully this comparison gives you a better 
understanding of both Java and C
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Disclaimer

❖ Java and C both can have multiple implementations.

▪ Some things we discuss in this lecture may not be guaranteed, but 
instead may vary.

❖ C: Leaves some details that can vary from machine to 
machine and/or compiler to compiler
▪ Example: what is the size and sign of the char datatype?

▪ Example: What happens when we return the address of data in
the current stack frame?

❖ Java: the language specification provides an abstraction

▪ We can understand how the code should behave, but it may do 
things differently when actually compiled & run
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Java Data Types: Primitives

❖ Primitive types are pretty much the same as C
▪ int, float, double, etc.

▪ Java doesn’t have unsigned types to avoid issues with 
converting & comparing between signed/unsigned types

❖ char:

▪ char in C is 1-byte which represents an ASCII character

▪ char in Java is 2-bytes for 2-byte Unicode characters

❖ Primitive Size:

▪ Java is designed to be portable, primitives are fixed in size

▪ C primitive sizes can vary from machine to machine

▪ Example: int is 4-bytes in Java, and is usually 4-bytes in C
8
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Java Data Types: Pointers

❖ Pointers are a type of primitive in C. Can be used to access 
memory but we can also deal with the address directly 
(pointer arithmetic, get address of with &)

❖ Java has references, which are almost like "protected" or 
"hidden" pointers.

▪ All Object variables are actually Object References

▪ Much more constrained in how you use them to try and minize
possible memory usage errors

❖ Both have NULL or null to indicate an unused/empty 
pointer/references. (NULL typically represented as 0)
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Java Data Types: Objects

❖ C doesn’t have true Objects, but code can have "objects" 
or structs. This data can exist in many places in memory.

❖ Java has Object support. All objects in Java are stored on 
the heap. The "new" keyword allocates memory 
dynamically, like how malloc allocates space.
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Java Data Types: Objects Example

❖ Consider we have a struct Point in C and object Point
in Java. Each contains two integers, an X and a Y.
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int main() {

Point p;

p.x = 240;

p.y = 595;

}

public static void main(String args[]) {

Point p;

p.x = 240;

p.y = 595;

}

C Java

Point p;

Stack frame for
main()

x = 240

y = 595

NULL POINTER EXCEPTION

Point p is an uninitialized references
(an uninitialized pointer)
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Java Data Types: Objects Example

❖ Consider we have a struct Point in C and object Point
in Java. Each contains two integers, an X and a Y.
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int main() {

Point p;

p.x = 240;

p.y = 595;

}

public static void main(String args[]) {

Point p = new Point();

p.x = 240;

p.y = 595;

}

C Java

Point p;

Stack frame for
main()

x = 240

y = 595

Point p; Stack frame for
main()

Stack: C Stack: Java Heap: Java

x = 240

y = 595
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C Objects Heap Example

❖ C can also have “references” to things on the heap, but it 
is more explicit in the code
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int main() {

Point* p = malloc(sizeof(Point));

p->x = 240;

p->y = 595;

}

C

Point* p; Stack frame for
main()

Stack: C Heap: C

x = 240

y = 595
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Java Data Types: Arrays

❖ C Arrays:

▪ elements are garbage by default

▪ Length not stored

▪ Does not check bounds when accessing array

❖ Java Arrays:
▪ elements are initialized to 0 or null

▪ Length stored as an immutable field at start of the array

▪ Every access to the array does a bounds check, throwing an 
exception if the index is illegal
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Java Data Types: Arrays in Memory

❖ Example Code:

15

int main() {

int array[5];

}

public static void main(String args[]) {

int[] array = new int[5];

}

C Java

array

Stack frame for
main()

Stack: C

?? ?? ?? ?? ??

array Stack frame for
main()

Stack: Java Heap: Java

5 0 0 0 0 0
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Java Data Types: Strings

❖ C strings:

▪ ASCII Characters

▪ Pretty much an array of characters

▪ Null terminated

▪ Can be modified

❖ Java strings:

▪ Unicode Characters

▪ An Object

▪ Bounded by length like arrays in Java (with a 4-byte int field)

▪ Are immutable
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Java Data Types: Strings in Memory

17

int main() {

char str[3] = "Hi";

}

public static void main(String args[]) {

String str = new String("Hi");

}

C Java

str

Stack frame for
main()

Stack: C

H i \0
str Stack frame for

main()

Stack: Java Heap: Java

02 00 00 00 48 00 69 00

Byte level view

4-byte int 

length

2-byte

chars
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Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice
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None of this is on 

the final exam or 

HW10/HW11
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Compilation

❖ In this class, we’ve walked through the C compilation 
Process

▪ C codes is compiled into assembly instructions

▪ Assembly instructors are assembled into machine code

❖ At run-time, machine Code Is loaded directly into program 
memory and run directly on the processor

19

C code

ASM

Machine Code 

(binary)

Executable
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Interpreters

❖ There exist other ways for programming languages to run 
on a computer. A common method is using interpreters

▪ Python, Lisp, Javascript, etc.

❖ The interpreter is a program that runs directly on the 
processor, reads your code, and interprets how to 
emulate the execution of your code.

20

InterpreterSource Code

Reads source code
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Intermediate Formats

❖ Some languages are not read directly by the interpreter 
and instead are translated to some intermediary format

▪ When we compile Java code, we are compiling from Java to Java
bytecode

❖ Byte code provides an easier format for the interpreter to 
read our code

❖ Java bytecode can be used to implement other 
programming languages, 

▪ Kotlin, Scala, etc

21
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Usual Java Compilation

❖ Java code is first compile to Java bytecode by a java 
compiler

❖ Java Byte code is then run on the Java Virtual Machine 
(JVM) which acts sort of like a Java bytecode interpreter

❖ There are other ways to compile and run Java and there 
are many optimizations that can be made to 

22
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JIT

❖ Just In Time (JIT) compilation

▪ The interpreter/run-time environment will compile some 
bytecode into machine code while the program is running to try 
and execute the code faster.

❖ Translating to machine code has some overhead cost, 
especially if the code translation is complex or there are a 
lot of checks for optimization

❖ Some interpreters/environments will try to analyze the 
code to see which parts of bytecode is worth translating 
to machine code

23



CIS 2400, Fall 2022L23: Java vs C,  C TipsUniversity of Pennsylvania

Interpreters VS Compilers

❖ Interpreters make it easier to run on different 
architectures since the environment of the program is 
controlled by the interpreter

❖ Interpreters usually have deep connection to a debugger, 
making development of a debugger easier

❖ Allow for a garbage collector to implicitly work while the 
program is running

❖ Interpreters have more overhead cost than compiled 
languages and run slower

❖ Some languages aren’t clearly interpreted or compiled

24
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Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice

25

None of this is on 

the final exam or 

HW10/HW11
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Garbage Collection

❖ Garbage Collection:

▪ automatically deallocates memory on the heap.

❖ Commonly used in many programming Languages:

▪ Java, C#, Go, Javascript, Ruby, Julia, …

❖ Requires some overhead to check and see what memory 
can be deallocated and which is still being used

❖ Many implementations and optimizations on garbage 
collection

26
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Trace Garbage Collection

❖ To decide which memory can be deallocated, garbage 
collectors often trace memory to see which memory is 
still "reachable" by the user program.

❖ The garbage collector keeps track of all allocations and 
can draw memory references & allocations like a directed 
graph

27
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Trace Garbage Collection

❖ We start with a set of allocations we know are reachable 
and call these Root Nodes (usually these are held as 
references in local variables still on the stack)

28

Root Nodes
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Trace Garbage Collection

❖ We start with a set of allocations we know are reachable 
and call these Root Nodes (usually these are held as 
references in local variables still on the stack)

❖ We then trace through all references. Anything 
referenced from a reachable node is reachable.

29

Root Nodes
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Lecture Outline

❖ Java vs C

▪ Java Datatypes

▪ Java Compilation

▪ Java Garbage Collector

❖ C tips & Practice
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None of this is on 

the final exam or 

HW10/HW11
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C: Common Mistakes

❖ The most common mistakes I notice in office hours 
teaching usually deal with handling memory:

▪ How parameters are passed

▪ Using Output parameters

▪ Exceeding the bounds of an array

▪ Issues with deallocating memory

31
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C is Call-By-Value

❖ C (and Java) pass arguments by value

▪ Callee receives a local copy of the argument

• Register or Stack

▪ If the callee modifies a parameter, the caller’s copy isn’t modified

32

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...
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Broken Swap

33

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

Note: Arrow points 
to next instruction.
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Broken Swap
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void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7
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Broken Swap

35

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7

swap
a 42 b -7

tmp ??
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Broken Swap

36

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7

swap
a 42 b -7

tmp 42
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Broken Swap

37

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42

swap
a -7 b -7

tmp 42

b -7
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Broken Swap

38

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42

swap
a -7 b 42

tmp 42

b -7
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Broken Swap

39

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

brokenswap.c

main a 42 b -7



CIS 2400, Fall 2022L23: Java vs C,  C TipsUniversity of Pennsylvania

Faking Call-By-Reference in C

❖ Can use pointers to approximate call-by-reference

▪ Callee still receives a copy of the pointer (i.e. call-by-value), but it 
can modify something in the caller’s scope by dereferencing the 
pointer parameter

40

void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(a, b);

...

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...
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Fixed Swap

41

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

Note: Arrow points 
to next instruction.

main a 42 b -7
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Fixed Swap

42

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a 42 b -7

swap
a b

tmp ??
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Fixed Swap

43

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a 42 b -7

swap
a b

tmp 42
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Fixed Swap

44

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a -7 b -7

swap
a b

tmp 42
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Fixed Swap

45

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a -7 b 42

swap
a b

tmp 42
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Fixed Swap

46

void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int main(int argc, char** argv) {

int a = 42, b = -7;

swap(&a, &b);

...

swap.c

main a -7 b 42
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Practice Problem:

❖ What does this code print?

47

typedef struct point_st {

int x, y;

} Point;

void increment_point(Point p) {

p.x++;

p.y++;

}

int main() {

Point p = {1, 5};

increment_point(p);

printf("x: %d y: %d\n", p.x, p.y);

}
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Practice Problem:

❖ What does this code print?

48

typedef struct point_st {

int x, y;

} Point;

void increment_point(Point p) {

p.x++;

p.y++;

}

int main() {

Point p = {1, 5};

increment_point(p);

printf("x: %d y: %d\n", p.x, p.y);

}

This code prints “x: 1,  y: 5”

Structs are 
passed by 
value
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Practice Problem: Fixed

❖ Fixed code that uses pointers to simulate
pass-by-reference

49

typedef struct point_st {

int x, y;

} Point;

void increment_point(Point* p) {

p->x++;

p->y++;

}

int main() {

Point p = {1, 5};

increment_point(&p);

printf("x: %d y: %d\n", p.x, p.y);

}
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Practice Problem: 

❖ What is wrong with this code?

50

#define LINE_LEN 250

int main() {

FILE* f = fopen("Hi.txt", "r");

if (f == NULL)

return EXIT_FAILURE;

char buf[10];

while(fread(buf, sizeof(char), LINE_LEN, f)) {

printf("%s", buf);

}

fclose(f);

return EXIT_SUCCESS;

}
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Practice Problem: 

❖ What is wrong with this code?

51

#define LINE_LEN 250

int main() {

FILE* f = fopen("Hi.txt", "r");

if (f == NULL)

return EXIT_FAILURE;

char buf[10];

while(fread(buf, sizeof(char), LINE_LEN, f)) {

printf("%s", buf);

}

fclose(f);

return EXIT_SUCCESS;

}

buf only has space for 10 characters,
but fread tries to read 250!

This causes stack smashing, 
program probably crashes
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Practice Problem: 

❖ What is printed by this code?

52

int main() {

uint16_t i = 0;

for (i = 0; i < 65536; i++) {

printf("%d ", i);

}

return EXIT_SUCCESS;

}
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Practice Problem: 

❖ What is printed by this code?

53

int main() {

uint16_t i = 0;

for (i = 0; i < 65536; i++) {

printf("%d ", i);

}

return EXIT_SUCCESS;

}

Code goes infinite!
i is of type uint16_t which only has 
a max value of 65535!
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Practice Problem: 

❖ Similar Issue with unsigned types:

54

int main() {

uint16_t i;

for (i = 120; i >= 0; i--) {

printf("%d ", i);

}

return EXIT_SUCCESS;

}

i never becomes negative, so the loop 
condition always evaluates to true
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55

❖ What is wrong with this program?

▪ (ignoring style issues)

#include "pair.h"

#include <stdio.h>

void Pair_Allocate(pair *out) {

out = (pair *) malloc(sizeof(pair))

out->x = 0;

out->y = 0;

}

void Pair_Print(pair *p) {

printf("(x:%d, y:%d)", p.x, p.y);

}

#include "pair.h"

#include "util.h"

int main(){

pair * p;

Pair_Allocate(p);

p->x = FOO;

p->y = 595;

Pair_Print(*p);

}

util.h

main.c

pair.h

Buggy Program

#define FOO 240

typedef struct pair_st {

int x, y;

} pair;
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#define FOO 240

typedef struct pair_st {

int x, y;

} pair;

56

❖ What is wrong with this program?

▪ (ignoring style issues)

#include "pair.h"

#include <stdio.h>

void Pair_Allocate(pair *out) {

out = (pair *) malloc(sizeof(pair))

out->x = 0;

out->y = 0;

}

void Pair_Print(pair *p) {

printf("(x:%d, y:%d)", p.x, p.y);

}

#include "pair.h"

#include "util.h"

int main(){

pair * p;

Pair_Allocate(p);

p->x = FOO;

p->y = 595;

Pair_Print(*p);

}

util.h

main.c

pair.h
No header guards!

Output parameter

misuse

Needs to use -> 

syntax

Memory leak

Shouldn’t

Dereference

Buggy Program
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Low Level Programming Review

❖ Complete the function "rand_string", which generates a 
random string of random length. Assume we have the 
following functions available to you:

▪ int rand_len();

// returns a random int in the range of 1 – 256

▪ char rand_char();

// returns a random printable character

// (no '\0' or other special characters)

❖ If you finish, write a small main function that calls
rand_string and prints out the string

57



CIS 2400, Fall 2022L23: Java vs C,  C TipsUniversity of Pennsylvania

Low Level Programming Review

58

// returns a random string and its length. Returns -1 on error

int rand_string(char **output) {

// generate random length

int len = rand_len();

// allocate space for the string (+1 for null terminator)

char* result = (char *) malloc((len+1)*sizeof(char));

// error checking

if (result == NULL)

return -1;

// assign random characters

for (int i = 0; i < len; i++)

result[i] = rand_char();

// add null terminator

result[len] = '\0';

// return results

*output = result;

return len;

}
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Low Level Programming Review

59

int main() {

char* str;

// generate random string

int len = rand_string(&str);

if (len == -1)

return EXIT_FAILURE;

printf("%s\n", str);

free(str);

return EXIT_SUCCESS;

}
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C Tips: Ownership

❖ In C and C++, there is no garbage collector and instead the 
programmed has to manage memory 
allocation/deallocation themselves.

❖ To help reason about code, try to think of who has the 
"Ownership" or "Responsibility" to free code and who is 
just "Borrowing" memory. 

❖ In the previous example, the comment for
rand_string should say something like "The caller is 
responsible for freeing the resulting string"

60


