
R7: Traps and Pointers CIS 2400, Fall 2022

Traps and Pointers
CIS 2400 Recitation 7

R7: Traps and Pointers CIS 2400, Fall 2022

Recitation Outline

● Interacting with OS Code
○ TRAP/RTI
○ Directives
○ LC4 I/O
○ System calls

● Intro to C
○ Pointers
○ Strings
○ Output parameters

2

R7: Traps and Pointers CIS 2400, Fall 2022

Interacting with OS Code

3

R7: Traps and Pointers CIS 2400, Fall 2022

Invoking OS Code

TRAP UIMM8

● Stores PC + 1 into R7
○ Stores the address we were at so we can return to it later

● Sets PC to 0x8000 + UIMM8
○ Sends the User to execute instructions in the OS potion of memory.

● Sets PSR[15] to 1
○ Sets the privilege bit, marking that it is safe to access and execute OS code

Note that we are limited to TRAP to only 256 different addresses 0x8000 to 0x80FF

● OS Code is much bigger than 256 addresses

4

R7: Traps and Pointers CIS 2400, Fall 2022

OS Layout

To have some control over where
the user enters the OS, they are
limited to 256 possible locations.

● These 256 locations are
populated with JMP instructions
that will send the user to a
specified OS function

● Each of the 256 locations could
send the user to a different OS
system call, maximizing our use
of the UIMM8 stored in TRAP

5

;;; OS Code
.OS
.CODE
.ADDR x8000;
JMP TRAP_GETC ; x00
JMP TRAP_PUTC ; x01
JMP TRAP_DRAW_H_LINE ; x02
JMP TRAP_DRAW_V_LINE ; x03

R7: Traps and Pointers CIS 2400, Fall 2022

Returning From OS Code

RTI

● PC = R7
○ Sets the PC to be value we stored last time when we called TRAP

● PSR[15] = 0
○ Sets Privilege bit to 0, we are returning to User code

6

R7: Traps and Pointers CIS 2400, Fall 2022

ASM Directives

Used in the assembler, not stored in memory

Prefixed with “.”

● [!!] .UCONST: Associates a label with a constant unsigned value

● .CONST: Associates a label with a constant signed value

● .BLKW: Reserve UIMM16 words of memory from the current address

● .STRINGZ "String": Expands to a .FILL for each character in "String"

● .FALIGN: Pad current memory address to next multiple of 16

7

R7: Traps and Pointers CIS 2400, Fall 2022

Pseudo-Instructions

Useful abstraction to bundle different instructions together / auto-fill arguments

● LC: Load Constant
○ Sets a register to have a constant value like those set with .UCONST

○ Assembles to a CONST and HICONST pair at runtime

● LEA: Load Effective Address
○ Stores address of <Label> in Rd

○ Assembles to a CONST and HICONST pair at runtime

● RET: Return to R7
○ Assembles to JMPR R7

8

R7: Traps and Pointers CIS 2400, Fall 2022

I/O Registers

There are separate “registers” that are used for I/O

● Not the same as R0, R1, PC, or the PSR
● Instead, the register is a dedicated location in Memory

○ Usually address is setup in ASM with .UCONST

To read/write to the register:

● LC the address
● Use LDR or STR to read/write

9

OS_ADSR_ADDR .UCONST xFE04 ; display status register
OS_ADDR_ADDR .UCONST xFE06 ; display data register

R7: Traps and Pointers CIS 2400, Fall 2022

I/O Registers

There are two registers paired for I/O operations

● Status Register
○ The MSB of the status register designates if I/O is ready

● Data Register
○ Where we read/write to depending on the register.

10

OS_ADSR_ADDR .UCONST xFE04 ; display status register
OS_ADDR_ADDR .UCONST xFE06 ; display data register

R7: Traps and Pointers CIS 2400, Fall 2022

Example System Call (PUTC)

11

TRAP_PUTC
LC R4, OS_ADSR_ADDR
LDR R1, R4, #0
BRzp TRAP_PUTC ; Loop while the MSB is zero

LC R4, OS_ADDR_ADDR
STR R0, R4, #0 ; Write out the character

RTI

R7: Traps and Pointers CIS 2400, Fall 2022

System Call Practice 1

Implement the system call
TRAP_DRAW_H_LINE.

This will draw a horizontal line on the
video display in between two given
columns in a specified row.

Inputs:

● R0 - row to draw on
● R1 - column address 1
● R2 - column address 2
● R3 - color to draw with

12

TRAP_DRAW_PIXEL
 ; fill (R0, R1) with R3
 ; compute (R0, R1) address
 LEA R4, OS_VIDEO_MEM
 LC R5, OS_VIDEO_NUM_COLS
 MUL R5, R0, R5
 ADD R5, R5, R1
 ADD R4, R4, R5

 ; draw the color
 STR R3, R4, #0

R7: Traps and Pointers CIS 2400, Fall 2022

System Call Practice 1 – Sample Solution

13

TRAP_DRAW_H_LINE
CMP R1, R2 ; figure out whether R1 or R2 is larger
BRnz NO_SWAP
ADD R4, R1, #0 ; swap R1 and R2 using R4
ADD R1, R2, #0
ADD R2, R4, #0 ; R1 <= R2

NO_SWAP
LEA R4, OS_VIDEO_MEM
LC R5, OS_VIDEO_NUM_COLS
MUL R5, R0, R5 ; compute (row * NUM_COLS)
ADD R5, R5, R1 ; compute (row * NUM_COLS) + col
ADD R4, R4, R5 ; add offset to the start of video mem

DRAW_LOOP
STR R3, R4, #0 ; fill in the pixel
ADD R4, R4, #1 ; update pixel address (increment col)
ADD R1, R1, #1 ; update R1
CMP R1, R2 ; test whether R1 <= R2
BRnz DRAW_LOOP
RTI

R7: Traps and Pointers CIS 2400, Fall 2022

System Call Practice 2

Implement the system call TRAP_GETL.

This will read in a line of input from the terminal, until it
reads the new line character \n. \n should not be included in
the output.

R0 is setup to be a pointer to where the result should be
stored. You may assume there is enough space to store the
string.

Hints:

● Implementation for TRAP_GETC (gets a single
character), which returns a character if there is one to
read.

● Your code should wait until a character is ready.
● Newline character has an ASCII value of 10

14

TRAP_GETC
LC R4, OS_KBSR_ADDR
LDR R0, R4, #0
BRzp GETC_END
LC R4, OS_KBDR_ADDR
LDR R1, R4, #0

GETC_END
RTI

R7: Traps and Pointers CIS 2400, Fall 2022

System Call Practice 2 – Sample Solution

15

TRAP_GETL
LC R4, OS_KBSR_ADDR
LDR R4, R4, #0
BRzp TRAP_GETL ; try again if not ready
LC R4, OS_KBDR_ADDR
LDR R1, R4, #0 ; read character
CMPI R1, #10 ; compare to \n (ASCII 10)
BRz GETL_END
STR R1, R0, #0
ADD R0, R0, #1
JMP TRAP_GETL

GETL_END
RTI

R7: Traps and Pointers CIS 2400, Fall 2022

Memory in C

16

R7: Traps and Pointers CIS 2400, Fall 2022

Pointers

● Pointers are another primitive data type

● An integer can hold an index into an array

● If memory is a giant array of bytes, then a

pointer just holds an index into that array

17

type *name;

int index; 3

int *ptr; 0x20...

R7: Traps and Pointers CIS 2400, Fall 2022

Pointer Syntax

Note the two different uses

of *

→ Declaring a pointer

→ Dereferencing a pointer

18

&

*

“Address of”

“value at”

int x;
int *ptr;

ptr = &x;
x = 5;
*ptr = 10;

0x2001 x --

0x2002 ptr --

0x2001 x --

0x2002 ptr 0x2001

0x2001 x 5

0x2002 ptr 0x2001

0x2001 x 10

0x2002 ptr 0x2001

R7: Traps and Pointers CIS 2400, Fall 2022

Pointer Practice

What does this program

print?

19

void bar(int *x, int *y, int *z) {
 z = x;
 *x = 6;
 *z = *x * *z;
 y = *x;
}

int main(int argc, char *argv[]) {
 int x = 16, y = 42, z = 5;
 bar(&x, &y, &z);
 printf("%d, %d, %d\n", x, y, z);
 return 0;
}

→ 36, 42, 5

R7: Traps and Pointers CIS 2400, Fall 2022

Strings

● A string is an array of characters that has a null terminator character at the

end '\0’

● When allocating space for a string, remember to save space for the null

terminator!

20

char str[] = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

R7: Traps and Pointers CIS 2400, Fall 2022

Strings as char*

You can also use a pointer for a string.

C will allocate the characters somewhere else in memory and the pointer will

point to the first character in the string

21

char *str = "Hello";

address 0x2000 0x2001 0x2002 0x2003 0x2004 0x2005

value 'H' 'e' 'l' 'l' 'o' '\0'

0x20...str

R7: Traps and Pointers CIS 2400, Fall 2022

Strings Practice

Complete the implementation of the function strcpy

Takes in a destination and a source, copying the string of the source into the

destination. Assume that there is enough space to hold the copied string in

dest returns the address passed in as dest.

22

char* strcpy(char *dest, char *src);

R7: Traps and Pointers CIS 2400, Fall 2022

Strings Practice – Sample Solution

23

char* strcpy(char *dest, char *src) {
char* dest_res = dest;
while (*src != ‘\0’) { // loop until we hit \0

*dest = *src; // copy over content at src to dest
++dest;
++src;

}
*dest = ‘\0’; // don’t forget to null-terminate!
return dest_res;

}

R7: Traps and Pointers CIS 2400, Fall 2022

Output Parameters

In the following function, will the user get 5 as output? If not, how would you

rewrite the function for the user to get 5?

24

void get_five(int out) {
 ret = 5;
}

int main() {
 int x;
 get_five(x);
 printf(“%d\n”, x);
}

R7: Traps and Pointers CIS 2400, Fall 2022

Output Parameters

Will the user get 5 as output?

No! You need to use a pointer so that

the function can access the integer

owned by the caller

25

void get_five(int *out) {
 *ret = 5;
}

int main() {
 int x;
 get_five(&x);
 printf(“%d\n”, x);
}

R7: Traps and Pointers CIS 2400, Fall 2022

Output Parameters Practice

Write a function called product_and_sum() that take an array, array length, as

input parameters, has two integer output parameters, and returns void.

The function should calculate the sum of all values in the array and the product

of all values in the array, and then return the sum and product through output

parameter.

After you have written the function, write a main() function that setups an array,

calls the function, and prints the output.

26

R7: Traps and Pointers CIS 2400, Fall 2022

Output Parameters Practice – Sample Solution

27

void product_and_sum(int* arr, int len, int* sum, int* prod) {
*sum = 0;
*prod = 1;
for (int i = 0; i < len; ++i) {

*sum += *arr;
*prod *= *arr;
++arr;

}
}

int main() {
int arr[5] = {1, 2, 3, 4, 5};
int sum, prod;
product_and_sum(arr, 5, &sum, &prod);

}

R7: Traps and Pointers CIS 2400, Fall 2022

That’s all we have for today!
Reminders:

● TA-lead recitations will take place on

○ Tuesdays 6:30-8:00pm in Moore 100A

○ Wednesday 12:00-1:30pm in Moore 100C

● Due dates

○ Check-in06 4:59pm Wednesday 11/2

○ HW06 11:59 pm on Friday 11/4

○ Mid-semester survey 11:59pm on Wednesday 11/9

28

