
R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Heap, Makefiles, Debugging 
Tools

CIS 2400 Recitation 8



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Recitation Outline

● Heap

○ Dynamic memory allocation

○ Structs

● Makefiles

● [For reference] Debugging tools cheat sheets

○ GDB

○ Valgrind

2



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Heap

3



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

LC4 Memory Breakdown: User Space

4



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Static vs. Dynamic Memory Allocation

5

● Static = Compile time

○ Allocate a chunk of 
memory to a variable 
of known size 

● Dynamic = Runtime

○ Allocate a chunk of 
memory to a 
variable of unknown 
size at compile time 
(e.g. struct, array of 
unknown length)

#define MAX_LINE_LENGTH = 100
char user_input[MAX_LINE_LENGTH]

#define NODE_STRUCT_SIZE = ???
// how do I allocate :((



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Dynamic Allocation - Heap

6

● Dynamic allocation is completely managed by 
the programmer, since the compiler does not 
have enough information

● Dynamically allocated variables live in the heap, 
where they persist until the user “frees” them

● Note that statically allocated variables will 
either be global variables (has their own space) 
or local variables (live in the stack, more on that 
later)



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Dynamic Allocation - How to interact with the heap?

7

● Two functions

○ void *malloc(size_t size)
■ Gives a pointer to (address of) heap region 

of size size

○ void free(void *ptr)
■ Return the region pointed to by ptr to the 

heap (now free to use by other variables!)



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Malloc - how to get the size?

8

● void *malloc(size_t size)
● Variable size can be obtained using the sizeof() operator

● The sizeof operator can be applied to a variable or a type and it 
returns the size of that object in bytes

● Example

○ sizeof(int) - returns the size of integer

■ struct deque_struct dq
■ sizeof(dq) - returns the size of the struct dq (based on the struct 

fields sizes, etc)



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Allocation Example

Recall strings from R7.

Static allocation:

Using malloc described in the previous slides, how do I allocate the same amount of 

space on the heap?

9

char str[8];

char* str = malloc(sizeof(char) * 8)



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Structs

Struct: C datatype that contains a set of fields

● Similar to a Java class, but with no methods or constructors

10



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Struct Example – Declaration

● struct tells us that we are creating a new structured data type

11

struct ll_node {
int value;
struct ll_node *next;
struct ll_node *prev;

};



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Struct Example – Creating, Getting/Setting Fields 1

Getting/setting field values

→ Use dot notation for structs 

themselves

12

struct ll_node {
int value;
struct ll_node *next;
struct ll_node *prev;

};

struct ll_node n1; 

struct ll_node n2;

n1.value = 1;

n2.value = 2;

n1.next = &n2;

n2.prev = &n1;

printf(“%d -> %d”, n1.value, 

*(n1.next).value);



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Struct Example – Creating, Getting/Setting Fields 2

Getting/setting field values

→ Use arrow notation for pointers

Syntactic sugar for

*(mystruct).value
13

struct ll_node {
int value;
struct ll_node *next;
struct ll_node *prev;

};

struct ll_node *n1 = 
malloc(sizeof(struct ll_node));
struct ll_node *n2 = 
malloc(sizeof(struct ll_node));
n1->value = 1;
n2->value = 2;
n1->next = n2;
n2->prev = n1;
printf(“%d -> %d”, n1->value, 
n1->next->value);



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Struct Example – Alias Declaration 

● typedef creates an alias for the struct

● Lets us drop the struct keyword in typing

● What is the alias above?
14

typedef struct ll_node {
int value;
struct ll_node *next;
struct ll_node *prev;

} Node;
// OR: typedef struct ll_node Node



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Struct Example – Creating, Getting/Setting Fields with Alias

Getting/setting field values

→ Use arrow notation

Syntactic sugar for

*(mystruct).value
15

typedef struct ll_node {
int value;
struct ll_node *next;
struct ll_node *prev;

} Node;

Node *n1 = malloc(sizeof(Node));

Node *n2 = malloc(sizeof(Node));

n1->value = 1;

n1->next = n2;

n2->value = 2;

n2->prev = n1;

printf(“%d -> %d”, n1->value, 
n1->next->value);



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Dynamic Memory Allocation Example

16



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Dynamic Memory Allocation Example

17



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

What if I don’t free?

18

MEMORY LEAKS



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Exercise

In a company, there are multiple teams. Teams have 1 manager and several employees, all 
with names. Employees may have desk neighbors to their left and/or right. For bigger 
teams, employees may not all be sitting in a row.

1. Create structs to represent the team and each of its parts.
2. Then, write functions to

a. Create an empty team (knowing the manager)
b. Add an employee to a team (knowing who their desk neighbors are)
c. Remove an employee
d. Remove an entire team

Remember, we don’t want memory leaks!

19



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Makefile

20



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Why do Makefiles exist?

● Makefiles are used to help decide which parts of a large program need to be 

recompiled. In the vast majority of cases, C or C++ files are compiled. 

● Other languages typically have their own tools that serve a similar purpose as Make. 

● Make can also be used beyond compilation too, when you need a series of 

instructions to run depending on what files have changed. 

21



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Makefile Syntax

A Makefile consists of a set of rules. A rule generally looks like this:

● The targets are file names, separated by spaces. Typically, there is only one per rule.

● The commands are a series of steps typically used to make the target(s). These need to 

start with a tab character, not spaces.

● The prerequisites are also file names, separated by spaces. These files need to exist 

before the commands for the target are run. These are also called dependencies

22



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Typical Makefile 

Let's create typical Makefile - one that compiles a single C file. But before we do, make a 

file called blah.c that has the following contents:

Then create the Makefile (called Makefile, as always):

23



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Running this Makefile 

● To run this we would simply run make. 

● Since there's no target supplied as an argument to the make command, the first 

target is run. 
○ In this case, there's only one target (blah). 

○ The first time you run this, blah will be created. 

● The second time we run make, you'll see 
○ make: 'blah' is up to date. 

● That's because the blah file already exists. But there's a problem: if we modify blah.c 

and then run make, nothing gets recompiled.

24



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Fixing this Makefile

We solve this by adding a prerequisite:

When we run make again, the following set of steps happens:

● The first target is selected, because the first target is the default target

● This has a prerequisite of blah.c

● Make decides if it should run the blah target. It will only run if blah doesn't exist, or blah.c is 

newer than blah

● This last step is critical, and is the essence of make. What it's attempting to do is decide if the 

prerequisites of blah have changed since blah was last compiled. That is, if blah.c is modified, 

running make should recompile the file. And conversely, if blah.c has not changed, then it 

should not be recompiled.

25



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

How do Makefiles determine when to / not to compile? 

To make this happen, it uses the filesystem timestamps as a proxy to determine if 

something has changed. This is a reasonable heuristic, because file timestamps typically 

will only change if the files are modified. But it's important to realize that this isn't always 

the case. You could, for example, modify a file, and then change the modified timestamp 

of that file to something old. If you did, Make would incorrectly guess that the file hadn't 

changed and thus could be ignored.

26



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

A more complex makefile example 

The following Makefile ultimately runs all three targets. When you run make in the 

terminal, it will build a program called blah in a series of steps:

● Make selects the target blah, because the first target is the default target

● blah requires blah.o, so make searches for the blah.o target

● blah.o requires blah.c, so make searches for the blah.c target

27



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

A more complex makefile example 

● blah.c has no dependencies, so the echo command is run

● The cc -c command is then run, because all of the blah.o dependencies are finished

● The top cc command is run, because all the blah dependencies are finished

● That's it: blah is a compiled c program

28



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Make Clean

clean is often used as a target that removes the output of other targets, but it is not a special word in Make. You can 

run make and make clean on this to create and delete some_file.

Note that clean is doing two new things here:

● It's a target that is not first (the default), and not a prerequisite. That means it'll never run unless you 

explicitly call make clean

● It's not intended to be a filename. If you happen to have a file named clean, this target won't run, which is 

not what we want. 

29



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Debugging Tools

30



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

GDB Cheat Sheet

1. Run a program with gdb: `gdb <executable>` e.g. `gdb ./test_suite`

2. Start the program in gdb: `start <arg1> <arg2> ..` e.g. `start 4`

31



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

GDB Cheat Sheet: breakpoint example

1. `b Deque.c:122` → set a breakpoint on line 122 in Deque.c

2. `c` -> continue the program until the breakpoint

3. `s` -> step through each line at a time

4. Once the breakpoint is hit, print variables accordingly with `p`

5. In case of segfaults, type `where` to view where it is

32



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

Valgrind Cheat Sheet

For a program prog that can take flag a

Default syntax: valgrind ./prog -a

Flags:

● --leak-check=full

● --show-leak-kinds=all

● --track-origins=yes

● --verbose 

33



R8: Heap, Structs, Makefiles, Debugging CIS 2400, Fall 2022

That’s all we have for today!
Reminders:

● TA-lead recitations will take place on

○ Tuesdays 6:30-8:00pm in Moore 100A

○ Wednesday 12:00-1:30pm in Moore 100C

● HW7 is due this Friday 11/11 at 11:59pm

34


