
CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Bits & File I/O
Intro to Computer Systems, Fall 2021

Instructor: Travis McGaha

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Upcoming Due Dates

❖ LC4 Simulator HW (Part 1)

▪ Due Friday @ 11:59 pm

2

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

3

Any Logistical Questions?
Thoughts? Feelings?

Anything?

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Outline

❖ Bits & Bytes
▪ Binary & Hexadecimal

▪ Endianness

▪ Bit manipulation

❖ File I/O

❖ Hexdump demo

4

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Bits & Bytes Reminder

❖ A bit is a singular 1 or 0 that is used by the computer to
represent data

❖ A byte is a collection of 8 bits

▪ In most systems a byte is the smallest addressable unit

▪ (In LC4 everything is 16 bits… which is 2 bytes)

❖ There most/least significant bits/bytes.

▪ These are the bits/bytes that would most greatly affect the
magnitude of the data if we read the bits/bytes as a number
• E.g the most significant bit (msb) in 01101100 is ‘0’

❖ EVERYTHING IS STORED AS BITS IN A COMPUTER

5

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

The Meaning of Bits

❖ A sequence of bits can have many meanings!

❖ Consider the hex sequence 0x4E6F21
▪ Common interpretations include:
▪ The decimal number 5140257
▪ The characters “No!”
▪ The background color of this slide
▪ The real number 7.203034 ×10-39

❖ A series of bits can also be code!

❖ It is up to the program/programmer to decide how
to interpret the sequence of bits

6

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Hexadecimal

❖ Base 16 representation of numbers

❖ Allows us to represent binary with
fewer characters

▪ 0b11110011 == 0xF3
 ^ binary ^ hex

❖ In C, you can not define binary literals!

▪ int x = 0b0011; // illegal

❖ Hexadecimal has THE SAME bits
as a binary number.

❖ One hex “digit” is 4 bits.
Two hex “digits” is one byte. 7

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Bitwise operations

❖ Various operations can be performed on bits in C

▪ &

• Bitwise AND
– 0x9 & 0x3 = 0x1
– 0b1001 | 0b0011 = 0b0001

▪ |

• Bitwise OR
– 0xA | 0x9 = 0xB
– 0b1010 | 0b1001 = 0b1011

▪ ^

• Bitwise XOR
– 0x3 ^ 0xD = 0xE
– 0b0011 ^ 0b1101 = 0b1110

8

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Bitwise operations

❖ Various operations can be performed on bits

▪ ~

• Bitwise NOT or “compliment”
– ~0x5 = 0xA
– ~0b0101 = 0b1010

▪ <<

• Logical Left shift
– 0x2 << 2 = 0x8
– 0b0010 << 2 = 0b1000

▪ >>

• Right shift (arithmetic if signed, logical if unsigned)
– 0x4 >> 1 = 0x2
– 0b0100 >> 1 = 0b0010

9

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Bitwise Practice

❖ Given a 16 bit LC4 shift instruction, extract the sub-opcode
and return it

▪ SLL should return 0

▪ SRA should return 1

▪ SRL should return 2

10

unsigned short int shift_subop(unsigned short int insn) {

}

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Bitwise Practice

❖ Given a 16 bit LC4 shift instruction, extract the sub-opcode
and return it

▪ SLL should return 0

▪ SRA should return 1

▪ SRL should return 2

11

unsigned short int shift_subop(unsigned short int insn) {
 unsigned short int mask = 0x30;
 unsigned short int sub_op = insn & mask;
 sub_op = sub_op >> 4;
 return sub_op;
}

unsigned short int shift_subop(unsigned short int insn) {
 return (insn & 0x30) >> 4;
}

THERE ARE OTHER
POSSIBLE SOLUTIONS

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Endianness

❖ In other architectures, there is one byte at each address
location

▪ For multi-byte data, how do we order it in memory?

▪ Data should be kept together, but what order should it be?

▪ Example, store the 4-byte (32-bit) int:
0x A1 B2 C3 D4

❖ The order of the bytes in memory is called endianness

▪ Big endian vs little endian

12

Most significant Byte Least significant Byte

Each byte has its own
address

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Endianness

❖ Consider our example 0x A1 B2 C3 D4

❖ Big endian

▪ Least significant byte has highest address

▪ Looks the most like what we would read

▪ The standard for storing information on files/the network

❖ Little Endian

▪ Least significant byte has lowest address

▪ What your VM probably uses

13

Most significant Byte Least significant Byte

0x2000 0x2001 0x2002 0x2003

A1 B2 C3 D4

0x2000 0x2001 0x2002 0x2003

D4 C3 B2 A1

Least significant Byte

Note how the hex digits
within a byte are still in the
same order

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Endianness practice

❖ Complete the convert() function, which converts from
little endian to big endian for a 16 bit input

14

unsigned short int convert(unsigned short int input) {

}

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Endianness practice

❖ Complete the convert() function, which converts from
little endian to big endian for a 16 bit input

15

unsigned short int convert(unsigned short int input) {
 unsigned short int upper = (input & 0xFF00) >> 8;
 unsigned short int lower = input & 0x00FF;
 unsigned short int result = (lower << 8) | (upper);
 return result;
}

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Endianness functions

❖ There are some functions out there that convert byte
orderings

▪ htons() -> Host to Network short (16 bits)

• Converts from Host byte ordering to network byte ordering

▪ ntohs() -> Network to Host short (16 bits)

• Converts from network byte ordering to host byte ordering

❖ “Network byte order” is big endian. Your “host” machine
is little endian

❖ More info in <arpa/inet.h>

▪ Variants also exist for 32 bit and 64 bit conversion

16

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Outline

❖ Bits

▪ Binary & Hexadecimal

▪ Endianness

▪ Bit manipulation

❖ File I/O

❖ Hexdump demo

17

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Thinking about files in C

❖ In C (and unix based operating systems), a file is just a
sequence of bytes

▪ It is up to programs and users to interpret those bytes for various
applications

❖ Basic Operations:

▪ Open

▪ Close

▪ Read

▪ Write

❖ ALL FILES ARE SEQUNCES OF BYTES

▪ For some of these files, the bytes translate to ASCII Characters 18

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

FILE*

❖ C stdio provides FILE* and various functions for
reading/writing files

▪ FILE* and the associated functions can be used as a “file iterator”

❖ Main operations:

▪ fopen()
▪ fclose()
▪ fread()
▪ fwrite()
▪ feof()

❖ Three streams provided by default: stdin, stdout,
stderr

19

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

C FILE Functions (1 of 3)

❖ Some FILE* functions (complete list in stdio.h):

▪ FILE* fopen(filename, mode);
• Returns NULL on error (CHECK THIS)

• Opens the specified file in specified file access mode
– Some format access modes:

» "r" -> read from file

» "w" -> write to file (remove old content if file already exists)

» "a" -> append to file (write to end of file if it already exists)

» "rb" -> read in binary mode

» "wb" -> write in binary mode

▪ int fclose(stream);
• Closes the specified file.

20

FILE* fopen(filename, mode);

int fclose(FILE* f);

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

C FILE Functions (2 of 3)

❖ Some FILE functions (complete list in stdio.h):

▪ int fprintf(stream, format, ...);
• Writes an “array” of count elements of size bytes from ptr to file

▪ int fscanf(stream, format, ...);
• Reads an “array” of count elements of size bytes from file to ptr

❖ Each read/writes (size * count) number of bytes

❖ Note: These functions read/write bits directly.

▪ If we wrote an integer, the bits of the integer are written NOT the
characters.
E.g. if we had short int x = 13, we would write the bits
0000000000001101 and NOT the characters "13".

21

size_t fwrite(ptr, size, count, file);

size_t fread(ptr, size, count, file);

Returns the number of elements
read/written

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

C FILE Functions (2 of 3)

❖ Some FILE functions (complete list in stdio.h):

▪ int fprintf(stream, format, ...);
• Writes an “array” of count elements of size bytes from ptr to file

▪ int fscanf(stream, format, ...);
• Reads an “array” of count elements of size bytes from file to ptr

❖ Each read/writes (size * count) number of bytes

❖ Example:

22

size_t fwrite(ptr, size, count, file);

size_t fread(ptr, size, count, file);

#define BUFSIZE 128
int main(int argc, char** argv) {
 FILE *f = // for this example assume f is opened
 int readbuf[BUFSIZE];
 size_t readlen;
 readlen = fread(readbuf, sizeof(int), BUFSIZE, f);
 // ...

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

C FILE Functions (2 of 3)

❖ Some FILE functions (complete list in stdio.h):

▪ int fprintf(stream, format, ...);
• Writes an “array” of count elements of size bytes from ptr to file

▪ int fscanf(stream, format, ...);
• Reads an “array” of count elements of size bytes from file to ptr

❖ Can be used to read in one item instead of many

❖ Example:

23

size_t fwrite(ptr, size, count, file);

size_t fread(ptr, size, count, file);

int main(int argc, char** argv) {
 FILE *f = // for this example assume f is opened
 int read_val; // only reading one integer
 if (!fread(&read_val, sizeof(int), 1, f)) {
 // error handling
 }
 // ...

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

C FILE Functions (3 of 3)

❖ Some FILE* functions (complete list in stdio.h):

▪ int fprintf(stream, format, ...);
• Writes a formatted C string
– printf(...); is equivalent to fprintf(stdout, ...);

▪ int fscanf(stream, format, ...);
• Reads data and stores data matching the format string

24

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

FILE & Endianness

❖ If we are writing bits that represent elements larger than a
byte, we need to consider what is the endianness of the
bytes we write.

▪ The endianness should usually be big endian

▪ Note that ascii characters are 1 byte each, so endianness doesn’t
apply to them

❖ We prefer writing the bits of an integer instead of it’s
string equivalent UNLESS a human is supposed to read the
file.

▪ If we had an integer 432134, it would take 6 bytes to write the
string “432134” but only 4 bytes if it is a 32 bit integer.

25

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

File I/O Practice

❖ Finish the following program so that we write the array to
a file called "output.bytes" with the data in big endian

26

#include <stdio.h>
#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char** argv) {
 unsigned short int to_write[3] = {33219, 30902, 152};

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

File I/O Practice

❖ Finish the following program so that we write the array to
a file called "output.bytes" with the data in big endian

27

#include <stdio.h>
#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char** argv) {
 unsigned short int to_write[3] = {33219, 30902, 152};
 for (int i = 0; i < 3; i++) {
 to_write[i] = htons(to_write[i]);
 }
 FILE* f = fopen("output.bytes", "wb");
 if (f == NULL) {
 printf("Error: could not open file for writing\n");
 return EXIT_FAILURE;
 }
 fwrite(to_write, sizeof(unsigned short int), 3, f);
 fclose(f);
}

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Outline

❖ Bits

▪ Binary & Hexadecimal

▪ Endianness

▪ Bit manipulation

❖ File I/O

❖ Hexdump demo

28

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Hexdump

❖ Tool for looking at the contents of a binary file.

❖ Example:

❖ Want to store the output in a file?

29

hexdump –C divide.obj

hexdump –C divide.obj > hex.txt

CIS 240, Fall 2021R10: Bits, Files & hexdumpUniversity of Pennsylvania

Hexdump Output

❖ Example from doing

30

00000000 ca de 00 00 00 06 98 00 19 21 14 93 07 fd 19 3f |.........!.....?|
00000010 0f ff c3 b7 00 01 00 04 4c 4f 4f 50 c3 b7 00 06 |........LOOP....|
00000020 00 03 45 4e 44 c3 b7 00 05 00 0d 49 4e 46 49 4e |..END......INFIN|
00000030 49 54 45 5f 4c 4f 4f 50 |ITE_LOOP|
00000038

hexdump –C divide.obj

Offset (in hex)
into the file

Contents of the file in hex, with
spacing between each byte

Result of trying to read
the bytes as ASCII

