
Recitation 9/11
Welcome to your first recitation!

Vote Garrett for TA of the week!



Logistics

- Survey 00 DUE TONIGHT!
- hw 01 due Friday (2 more days)
- Check-in 02 due Tuesday (6 more days)



Recitation Overview

– Pointers / C Practice

– Bits & Binary



Pointers!



❖ Given the following code, what will be printed?

▪ HINT: I recommend drawing this out with boxes & arrows

(answer on next slide) 
void foo(int *x, int *y, int *z) {
  x = y;
  *x = *z;
  *z = 37;
}

int main(int argc, char *argv[]) {
  int x = 5, y = 22, z = 42;
  foo(&x, &y, &z);
  printf("%d, %d, %d\n", x, y, z);
  return 0;
}



❖ Given the following code, what will be printed?

▪ Answer: 5, 42, 37

void foo(int *x, int *y, int *z) {
  x = y;
  *x = *z;
  *z = 37;
}

int main(int argc, char *argv[]) {
  int x = 5, y = 22, z = 42;
  foo(&x, &y, &z);
  printf("%d, %d, %d\n", x, y, z);
  return 0;
}



Output Parameters
❖ Consider the following 

function:
▪ Will the user get 5 as output?

❖ No! you need to use a 
pointer so that the function 
can access the integer 
owned by the caller

void get_five(int out) {
  out = 5;
}

int main() {
  int x;
  get_five(x);
}

void get_five(int *out) {
  *out = 5;
}

int main() {
  int x;
  get_five(&x);
}



Bits & Binary!



Base 10

100 = 1
101 = 10
102 = 100
103 = 1,000
104 = 10,000

Ex: 4,253

3 x 100 
5 x 101

2 x 102

4 x 103

0 x 104



Base 2 - Binary Ex: 4,253 = b1000010011101
1 x 20 
0 x 21

1 x 22

1 x 23

1 x 24

0 x 25 
0 x 26

1 x 27

0 x 28

0 x 29

0 x 210

0 x 211 (2048)
1 x 212  (4096)



Base 16 - Hexadecimal



Binary to Hex

Ex: 4,253 = b1000010011101 = 0x????

1. Starting from right, chunk the bits in groups of 4

1 0000 1001 1101

2. Optional step: pad the left with 0’s until you have groups of 4

0001 0000 1001 1101

3. Convert each 4-bit chunk to its hex equivalent

109D

Answer: 4,253 = 0x109D 



Binary Question 

Base 2: 
Base 10: 108
Base 16:

Base 2: 100010
Base 10: 
Base 16:

*assume unsigned binary

Base 2:
Base 10:
Base 16: 3D

Base 2:
Base 10: 175
Base 16:



Binary Question

Base 2: 1101100
Base 10: 108
Base 16: 70

Base 2: 100010
Base 10: 34
Base 16: 22

*assume unsigned binary

Base 2: 00111101
Base 10: 61
Base 16: 3D

Base 2: 10101111
Base 10: 175
Base 16: AF



2’s Complement

● Signed integers (can represent positive or negative values)
● Negative Numbers - 1 Most Significant Bit
● Positive Numbers - 0 Most Significant Bit
● Negate binary numbers : Invert (1’s turn to 0’s and 0’s turn to 1’s) -> Plus 1

● Base 10 : - 83
● Base 2:

● Base 10:
● Base 2: 0111 1101

● Base 10 :
● Base 2: 1100 1000

● Base 10: 14
● Base 2:

Practice - Use 8 bits



2’s Complement

● Signed integers (can represent positive or negative values)
● Negative Numbers - 1 Most Significant Bit
● Positive Numbers - 0 Most Significant Bit
● Negate binary numbers : Invert (1’s turn to 0’s and 0’s turn to 1’s) -> Plus 1

● Base 10 : - 83
● Base 2: 1010 1101

● Base 10: 125
● Base 2: 0111 1101

● Base 10 : - 56
● Base 2: 1100 1000

● Base 10: 14
● Base 2: 0000 1110

Practice - Use 8 bits



Bit Operators

& - Bitwise And
1 & 1 = 1
1 & 0 = 0
0 & 1 = 0
0 & 0 = 0

| - Bitwise Or
1 | 1 = 1
1 | 0 = 1
0 | 1 = 1
0 | 0 = 0

^ - Xor
1 ^ 1 = 0
1 ^ 0 = 1
0 ^ 1 = 1
1 ^ 1 = 0

<< - Left Shift
1 << 1 = b10
1 << 2 = b100
1 << 3 = b1000

>> - Right Shift
2 >> 1 = 1
2 >> 2 = 0
2 >> 3 = 0

Notes: 
2 >> -1 = undefined!
2 << -1 = undefined!



Logical (Boolean) Operators

&& - Logical And
T && T = T
T && F = F
F && T = F
F && F = F

|| - Logical Or
T || T = T
T || F = T
F || T = T
F || F = F

! - Logical Not
!T = F
!F = T



Isolate the bit at index i (i+1th bit from the right)

Method 1:

1. M = 0
2. M1 = ~M (now all bits are 1’s)
3. M2 = M1 >> (i+1)
4. M3 = M2 << (i+1) (lower bits are zeroed 

out, add 1 to include bit at index i)
5. M4 = ~M3 (flip the bits; now left bits are 

zeroed out while right bits are 1)

Method 2: 

1. N = 1 << (i+1) (1 with i+1 zero’s after)
2. N1 = N - 1 (all i+1 zero’s are turned to 1’s 

and, everything to the left is now zero)

Given x = number and i = index of bit from the right

1. Zero-out the lower i bits: x >> i, then x << i 
2. Create and apply a mask - but there are multiple ways to do this!

a. Goal: mask is a number with i+1 ones on the right, and everything else is zero



Boolean logic tricks 
● What is the binary representation of the smallest 2C 16-bit integer?
● How to get -1 in binary without using - sign?
● !!x is not x
● Bitmask:  &(~0), &0, & 0xFF
● -1 + 1 = 0
● x ^ 0; x ^ -1
● Setting a bit x | (1 << 2); 
● Clearing a bit x & ~(1 << 2); 
● Flip a bit: x ^ (1 << 2);



C practice!



Yes or No?

1. Is NULL the same as 0?

2. Is the sizeof operator evaluated at compile time?

3. Is the size of a pointer always the same as the size of int on any system?

4. Is it possible to use bitwise operators on pointers in C?

5. Does shifting an integer more than its bit width result in undefined behaviors?

6. Is C statically typed?

7. Is C strongly typed?



Java versus C.  What’s the difference?

- Memory access: C does not enforce array size restriction -> will not throw out-of-bounds error if you try to 
access a[5] on a size 3 array!  

- C will not store the length of the array ANYWHERE in its memory
- Java always passes its variables as references (pointers to the object).  In C, you have to make this explicit.  

You need to tell the code that you are passing in a pointer, otherwise it will just copy the value stored in the 
pointer (pass by value).

- String type (Java) versus char* (C) 
- Java is compiled into bytecode, which is platform independent for any machine that has Java Virtual 

Machine (JVM) installed; For C, however, it is compiled down to machine code, which depends on 
platform-specific compilers.

- In summary: C being more “low level” means that you have to be more precise and explicit when 
designing program procedures - a lot of things (such as memory management) are not “handled for you” like 
in Java

Check out Daniel’s awesome ed post https://edstem.org/us/courses/62374/discussion/5201975  (C vs Java, #36)

https://edstem.org/us/courses/62374/discussion/5201975


It’s not you, it’s C
It’s not your fault, it’s seg fault.


