LC4 Instruction Set Reference v. 2017-01		
Mnemonic	Semantics	Encoding
NOP	$\mathrm{PC}=\mathrm{PC}+1$	0000 000x xxxx xxxx
BRp <Label>	(P) ? $\mathrm{PC}=\mathrm{PC}+1+(\operatorname{sext}($ IMM9 $)$ offset to <Label>)	0000 001i iiii iiii
BRz <Label>	(Z) ? PC = PC + $1+($ sext (IMM9) offset to <Label>)	0000 010i iiii iiii
BRzp <Label>	($\mathrm{Z} \mid \mathrm{P}$) ? $\mathrm{PC}=\mathrm{PC}+1+(\operatorname{sext}($ IMM9 $)$ offset to <Label>)	0000 011i iiii iiii
BRn <Label>	(N) ? PC = PC + $1+($ sext (IMM9) offset to <Label>)	0000 100i iiii iiii
BRnp <Label>	($\mathrm{N} \mid \mathrm{P}$) ? PC = PC + $1+(\mathrm{sext}($ IMM9) offset to <Label>)	0000 101i iiii iiii
BRnz <Label>	($\mathrm{N} \mid \mathrm{Z}$) ? $\mathrm{PC}=\mathrm{PC}+1+(\operatorname{sext}($ IMM9 $)$ offset to <Label>)	0000 110i iiii iiii
BRnzp <Label>	($\mathrm{N}\|\mathrm{Z}\| \mathrm{P}$) ? PC = PC + $1+($ sext (IMM9) offset to <Label>)	0000 111i iiii iiii
ADD Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs}$ + Rt	0001 ddds ss00 Ottt
MUL Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs} * \mathrm{Rt}$	0001 ddds ss00 1ttt
SUB Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs}$ - Rt	0001 ddds ss01 0ttt
DIV Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs} / \mathrm{Rt}$	0001 ddds ss01 1ttt
ADD Rd Rs IMM5	$\mathrm{Rd}=\mathrm{Rs}+\mathrm{sext}(\mathrm{IMM5})$	0001 ddds ss1i iiii
MOD Rd Rs Rt	Rd = Rs \% Rt	1010 ddds ss11 xttt
AND Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs}$ \& Rt	0101 ddds ss00 Ottt
NOT Rd Rs	$\mathrm{Rd}=\sim \mathrm{Rs}$	0101 ddds ss00 1xxx
OR Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs} \mid \mathrm{Rt}$	0101 ddds ss01 0ttt
XOR Rd Rs Rt	$\mathrm{Rd}=\mathrm{Rs} \wedge \mathrm{Rt}$	0101 ddds ss01 1ttt
AND Rd Rs IMM5	$\mathrm{Rd}=\mathrm{Rs}$ \& sext (IMM5)	0101 ddds ss1i iiii
LDR Rd Rs IMM6	$\mathrm{Rd}=\mathrm{dmem}[\mathrm{Rs}+$ sext(IMM6)]	0110 ddds ssii iiii
STR Rt Rs IMM6	dmem[Rs + sext(IMM6)] = Rt	0111 ttts ssii iiii
CONST Rd IMM9	$\mathrm{Rd}=$ sext (IMM9)	1001 dddi iiii iiii
HICONST Rd UIMM8	$\mathrm{Rd}=(\mathrm{Rd} \& 0 \mathrm{xFF}) \mid$ (UIMM8 $\ll 8$)	1101 dddx uuuu uuuu
CMP Rs Rt	NZP $=$ sign(Rs -Rt$)^{2}$	0010 sss0 0xxx xttt
CMPU Rs Rt	NZP $=$ sign(uRs - uRt) ${ }^{3}$	0010 sss0 1xxx xttt
CMPI Rs IMM7	NZP $=$ sign(Rs - IMM7)	0010 sss1 Oiii iiii
CMPIU Rs UIMM7	NZP = sign(uRs - UIMM7)	0010 sss1 1uuu uuuu
SLL Rd Rs UIMM4	Rd = Rs << UIMM4	1010 ddds ss00 uuuu
SRA Rd Rs UIMM4	$\mathrm{Rd}=\mathrm{Rs} \ggg$ UIMM4	1010 ddds ss01 uuuu
SRL Rd Rs UIMM4	$\mathrm{Rd}=\mathrm{Rs} \gg$ UIMM4	1010 ddds ss10 uuuu
JSRR Rs	R7 = PC + 1; PC = Rs	0100 0xxs ssxx xxxx
JSR <Label>	R7 = PC + 1; PC = (PC \& 0x8000) \| (IMM11 offset to <Label>) << 4)	0100 1iii iiii iiii
JMPR Rs	$\mathrm{PC}=\mathrm{Rs}$	1100 0xxs ssxx xxxx
JMP <Label>	$\mathrm{PC}=\mathrm{PC}+1+($ sext (IMM11) offset to <Label>)	1100 1iii iiii iiii
TRAP UIMM8	R7 = PC + 1; PC = (0x8000 \| UIMM8) ; PSR [15] = 1	1111 xxxx uuuu uuuu
RTI	$\mathrm{PC}=\mathrm{R7}$; PSR [15] $=0$	1000 xxxx xxxx xxxx
	Pseudo-Instructions	
RET	Return to R7	JMPR R7
LEA Rd <Label>	Store address of <Label> in Rd	CONST/HICONST
LC Rd <Label>	Store value of constant <Label> in Rd	CONST/HICONST
	Assembler Directives	
. CODE	Current memory section contains instruction code	
. DATA	Current memory section contains data values	
. ADDR UIMM16	Set current memory address value to UIMM16	
.FALIGN	Pad current memory address to next multiple of 16	
.FILL IMM16	Current memory address's value $=$ IMM16	
.STRINGZ "String"	Expands to a .FILL for each character in "String"	
.BLKW UIMM16	Reserve UIMM16 words of memory from the current address	
<Label> . CONST IMM16	Associate <Label> with IMM16	
<Label> .UCONST UIMM16	Associate <Label> with UIMM16	

0101: opcode or sub-opcode
ddd: destination register sss: source register 1 iii: signed immediate value uuu: unsigned immediate value
ttt: source register 2 xxx: "don't care" value

[^0]
[^0]: ${ }^{1}$ In this case the source and destination register are one and the same as HICONST reads and modifies the same register.
 ${ }^{2} \operatorname{sign}$ (Rs- Rt) results in one of three values: $+1,0$, or -1 , which set the appropriate bit in the NZP register.
 ${ }^{3}$ sign(uRs- uRt) indicates that Rs and Rt are treated as unsigned values.
 ${ }^{4}$ The NZP register is updated on any instruction that writes to a register, and on CMPx instructions.

