# Introductions, Binary Introduction to Computer Systems, Fall 2022 

Instructor: Travis McGaha

## TAs:

Ali Krema
Audrey Yang
David LuoZhang
Heyi Liu
Katherine Wang
Noam Elul
Ria Sharma

Andrew Rigas
Craig Lee
Eddy Yang
Janavi Chadha
Kyrie Dowling
Patricia Agnes
Sarah Luthra

Anisha Bhatia
Daniel Duan
Ernest Ng
Jason Hom
Mohamed Abaker
Patrick Kehinde Jr.
Sofia Mouchtaris

## How are you?

## Lecture Outline

* Introduction \& Logistics
- Course Overview
- Assignments \& Exams
- Policies
* Binary
- Conversions
- Hexadecimal
- ASCII
- Length Constraints


## Instructor: Travis McGaha

* UPenn CIS faculty member since... August 2021
- Currently my third semester at UPenn
- First Semester Solo with CIS 2400
* ( have (OVID :)) ) ) ) ) ) ) ) ) ) ) ) ) ) )
- My brain is not always there
* More on my personal website: https://www.cis.upenn.edu/~tqmcgaha/


## Course Overview: First Half



## Course Overview: First Half

## Course Overview: First Half

## Course Overview: First Half



## Course Overview: First Half



## Course Overview: First Half



## Course Overview: First Half



## Course Overview: First Half



## Course Overview: Second Half

```
##nclude <stdio.h>
2
3 int main() {
4 \text { printf("hello world!\n");}
5}
```

```
4.LC0:
```

4.LC0:
5 .string "hello world!"
5 .string "hello world!"
.text
.text
.globl main
.globl main
.type main, @function
.type main, @function
.cfi_startproc
.cfi_startproc
pushq %rbp
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
.cfi_offset 6, -16
movq %rsp, %rbp

```
        movq %rsp, %rbp
```

        Machine-runnable code
        Assembly Translation
    
## CProgramming () <br> CProgramming ()

Assembly Translation

Machine-runnable code

## Course Overview



## Learning Objectives

* To leave the class with a better understanding of:
- How a computer "really" works and runs your code
- What a computer is good at, how to exploit its strengths
- How modern hardware changes can affect software
- C programming $)^{-}$
* Topics list/schedule can be found on the course website


## Prerequisites

* Course Prerequisites:
- CIS 110/CIS 120
* What you should know already:
- Vague familiarity with how a program executes
- Java programming
- How to write \& design large open-ended programs from scratch


## Disclaimer

* This is a digest,
* READ THE WEBSITE
- https://www.seas.upenn.edu/~cis2400/current/
* READ THE SYLLABUS
- https://www.seas.upenn.edu/~cis2400/22fa/documents/syllabus


## Course Components pt. 1

* Lectures (26)
- Introduces concepts, slides \& recordings available
- In lecture polling. Polls remain open until the next lecture
* Sections (~10)
- Reiterates lecture content, lecture clarifications, assignment \& exam preparation. Optional, details TBD
* Homework Assignments (12)
- Due every week
- Most are programming
- Very flexible on-request late policy


## Course Components pt. 2

* Participation (lots)
- Lecture polls, Section participation, Weekly Check-in quizzes
* Exams (2)
- Two in-person exams
- Midterm will be October $26^{\text {th }}$ "In class"
- Final will be the week of finals (more details later)
* Textbook (0)
- No official textbook, but some suggested on course site


## Course Infrastructure

* Canvas
- Grades, surveys, quizzes, Lecture recordings
* Course Website
- Hosts almost all course content. Syllabus, slides, assignment specifications, course schedule....
- https://www.seas.upenn.edu/~cis2400/22fa/
* Gradescope
- Used for most homework turn ins
* Poll Everywhere
- Used for lecture polls
* Ed
- Course discussion board


## Course Policies

* HW Late Policy
- Late days given on request
- (Request usually granted)
- No cap on the number of late days per assignment
- More than 3 on an assignment requires approval from Travis
- Written HWs will not get more than 3 days late.
* Midterm Clobber Policy
- Final is cumulative
- If you do better on the "midterm section" of the final, your midterm grade can be replaced.


## Getting Help

* Ed
- Announcements will be made through here
- Ask and answer questions
- Sign up if you haven't already!
: Office Hours:
- Can be found on calendar on top of course website
- Starts.... soon? (waiting on room reservations)
* 1-on-1's:
- Can schedule 1-on-1's with Travis
- Should attend OH and use Ed when possible, but this is an option for when OH and Ed can't meet your needs


## We Care

* It is very important that you succeed in CIS 2400 and have a positive experience.
- Please reach out to course staff if something comes up and you need help
- Please reach out to course staff if you feel disrespected or uncomfortable by anything
* PLEASE DO NOT CHEAT OR VIOLATE ACADEMIC INTEGRITY
- We know that things can be tough, but please reach out if you feel tempted. We want to help you succeed
- Read more on academic integrity in the syllabus


## Any questions on anything?

## Lecture Outline

* Introduction \& Logistics
- Course Overview
- Assignments \& Exams
- Policies
* Binary
- Conversions
- Hexadecimal
- ASCII
- Length Constraints


## Base 10 (Decimal Numbers)

* Humans typically process numbers in base 10
- Each digit can represent 10 different values
- Each digit is weighted by its position
* Example:
$\left(3 * 10^{2}\right)+\left(8^{*} 10^{1}\right)+\left(2 * 10^{0}\right)$


## Base 2 (Binary Numbers)

* Computers typically process numbers in base 2
- Each "bit" can represent 2 different values (1 or 0)
- Each "bit" is weighted by its position
* Example:
$\left(1^{*} 2^{2}\right)+\left(0^{*} 2^{1}\right)+\left(1^{*} 2^{0}\right)$
$4+$
$0+1$
5

To note that a value is in base 2 , a prefix ' 0 b ' is often used Example: 0b101

## Practice

* What is 0b10110 in base 10?


## (11) Poll Everywhere

## * What is Ob10110 in base 10?

A. 6
B. 22
C. 16
D. 38
E. I'm not sure

## (11) Poll Everywhere

## pollev.com/tqm

* What is 0b10110 in base 10?
A. 6
B. 22
$\left(1 * 2^{4}\right)+\left(0 * 2^{3}\right)+\left(1 * 2^{2}\right)+\left(1^{*} 2^{1}\right)+\left(0 * 2^{0}\right)$
C. 16

16
$16+4+2$
D. 44
E. I'm not sure

22

## Decimal to Binary Conversion: Powers of 2

* Algorithm:
- Subtract the largest power of two <= number
- Put a one in the corresponding bit position
- Repeat until number is 0

| $n$ | $2^{n}$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1024 |

## Decimal to Binary Conversion: Division

* Algorithm:
- Divide by two - remainder will be the next smallest bit
- Keep dividing until answer is 0
* Example: 104
- $104 / 2=52 \mathrm{r} 0 \quad$ bit 0 is 0
- $52 / 2=26 r 0 \quad$ bit 1 is 0
- $26 / 2=13 r 0 \quad$ bit 2 is 0
- $13 / 2=6 r 1 \quad$ bit 3 is 1
- $6 / 2=3 r 0 \quad$ bit 4 is 0
- $3 / 2=1 r 1 \quad$ bit 5 is 1
- $1 / 2=0 r 1$ bit 6 is 1
- $104=0 b 1101000$


## (II) Poll Everywhere

## * What is 99 in binary?

A. Ob111111
B. Ob110111

| $n$ | $2^{n}$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1024 |

## (11) Poll Everywhere

* What is 99 in binary?
A. Ob111111

$$
\begin{aligned}
& 99-64=35, \text { bit } 6 \text { is } 1 \\
& 35-32=3, \text { bit } 5 \text { is } 1 \\
& 3-2=1, \text { bit } 1 \text { is } 1 \\
& 1-1=0, \text { bit } 0 \text { is } 1
\end{aligned}
$$

B. Ob110111
C. Ob1011111
D. 0b1100011

| $n$ | $2^{n}$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1024 |

E. I'm not sure

## Hexadecimal

* Base 16 representation of numbers
* Allows us to represent binary with fewer characters
* Prefixes to identify the base
- Ob11110011 == 0xF3
${ }^{\wedge}$ binary
${ }^{\wedge}$ hex
* Hexadecimal will be useful for later homework assignments

| Decimal | Binary | Hex |
| :--- | :--- | :--- |
| 0 | 0000 | $0 \times 0$ |
| 1 | 0001 | $0 \times 1$ |
| 2 | 0010 | $0 \times 2$ |
| 3 | 0011 | $0 \times 3$ |
| 4 | 0100 | $0 \times 4$ |
| 5 | 0101 | $0 \times 5$ |
| 6 | 0110 | $0 \times 6$ |
| 7 | 0111 | $0 \times 7$ |
| 8 | 1000 | $0 \times 8$ |
| 9 | 1001 | $0 \times 9$ |
| 10 | 1010 | $0 \times A$ |
| 11 | 1011 | $0 \times B$ |
| 12 | 1100 | $0 \times C$ |
| 13 | 1101 | $0 x D$ |
| 14 | 1110 | $0 x E$ |
| 15 | 1111 | $0 x F$ |

## (11) Poll Everywhere

## pollev.com/tqm

## * What is 0b110101110100 in hex?

A. $0 x D 74$
B. $0 x 6 B A$
C. $0 x 45 \mathrm{D}$
D. $0 \times 2 \mathrm{~EB}$
E. I'm not sure

| Decimal | Binary | Hex |
| :--- | :--- | :--- |
| 0 | 0000 | $0 \times 0$ |
| 1 | 0001 | $0 \times 1$ |
| 2 | 0010 | $0 \times 2$ |
| 3 | 0011 | $0 \times 3$ |
| 4 | 0100 | $0 \times 4$ |
| 5 | 0101 | $0 \times 5$ |
| 6 | 0110 | $0 \times 6$ |
| 7 | 0111 | $0 \times 7$ |
| 8 | 1000 | $0 \times 8$ |
| 9 | 1001 | $0 \times 9$ |
| 10 | 1010 | $0 \times A$ |
| 11 | 1011 | $0 \times B$ |
| 12 | 1100 | $0 \times C$ |
| 13 | 1101 | $0 \times D$ |
| 14 | 1110 | $0 \times E$ |
| 15 | 1111 | $0 \times 5$ |
|  |  | 37 |

## (11) Poll Everywhere

## pollev.com/tqm

## * What is 0b110101110100 in hex?

A. $0 x$ D74
B. $0 x 6 B A$


0xD $0 \times 7$ 0x4
C. $0 x 45 \mathrm{D}$
D. $0 \times 2 \mathrm{~EB}$
E. I'm not sure

| Decimal | Binary | Hex |
| :--- | :--- | :--- |
| 0 | 0000 | $0 \times 0$ |
| 1 | 0001 | $0 \times 1$ |
| 2 | 0010 | $0 \times 2$ |
| 3 | 0011 | $0 \times 3$ |
| 4 | 0100 | $0 \times 4$ |
| 5 | 0101 | $0 \times 5$ |
| 6 | 0110 | $0 \times 6$ |
| 7 | 0111 | $0 \times 7$ |
| 8 | 1000 | $0 \times 8$ |
| 9 | 1001 | $0 \times 9$ |
| 10 | 1010 | $0 \times A$ |
| 11 | 1011 | $0 \times B$ |
| 12 | 1100 | $0 \times C$ |
| 13 | 1101 | $0 \times D$ |
| 14 | 1110 | $0 \times E$ |
| 15 | 1111 | $0 \times 5$ |
|  |  | 38 |

## Hex Spelling

* 0xDEADCODE
* OxDEADBEEF
* 0xBO1DFACE
* 0xBADA55
* OxCAFEFOOD
* 0xF00


## Encoding

* We can represent more than just numbers with bits
- We just need an agreed upon encoding
* Decimal Numbers
- $0 \rightarrow 0 \times 00,1 \rightarrow 0 \times 01, \ldots, 240 \rightarrow 0 \times F 0$...
* Characters
- $A \rightarrow 0 \times 41, B \rightarrow 0 \times 42, C \rightarrow 0 \times 43, \ldots$
* Colors
- $\square \rightarrow 0 \times 281 \mathrm{EF} 2, \square \rightarrow 0 \times 990000$


## The Meaning of Bits

* A sequence of bits can have many meanings!
* Consider the hex sequence 0x4E6F21
- Common interpretations include:
- The decimal number 5140257
- The characters "No!"
- The background color of this slide
- The real number $7.203034 \times 10^{-39}$
* A series of bits can also be code!
* It is up to the program/programmer to decide how to interpret the sequence of bits


## * We can encode binary values to represent characters

## ASCII TABLE

| Decimal | Hex | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | [NULL] | 32 | 20 | [SPACE] | 64 | 40 | @ | 96 | 60 | - |
| 1 | 1 | [START OF HEADING] | 33 | 21 | ! | 65 | 41 | A | 97 | 61 | a |
| 2 | 2 | [START OF TEXT] | 34 | 22 | " | 66 | 42 | B | 98 | 62 | b |
| 3 | 3 | [END OF TEXT] | 35 | 23 | \# | 67 | 43 | C | 99 | 63 | c |
| 4 | 4 | [END OF TRANSMISSION] | 36 | 24 | \$ | 68 | 44 | D | 100 | 64 | d |
| 5 | 5 | [ENQUIRY] | 37 | 25 | \% | 69 | 45 | E | 101 | 65 | e |
| 6 | 6 | [ACKNOWLEDGE] | 38 | 26 | \& | 70 | 46 | F | 102 | 66 | f |
| 7 | 7 | [BELL] | 39 | 27 | ' | 71 | 47 | G | 103 | 67 | g |
| 8 | 8 | [BACKSPACE] | 40 | 28 | 1 | 72 | 48 | H | 104 | 68 | h |
| 9 | 9 | [HORIZONTAL TAB] | 41 | 29 | ) | 73 | 49 | I | 105 | 69 | i |
| 10 | A | [LINE FEED] | 42 | 2A | * | 74 | 4A | J | 106 | 6A | j |
| 11 | B | [VERTICAL TAB] | 43 | 2B | + | 75 | 4B | K | 107 | 6B | k |
| 12 | C | [FORM FEED] | 44 | 2C | , | 76 | 4C | L | 108 | 6C | I |
| 13 | D | [CARRIAGE RETURN] | 45 | 2D | - | 77 | 4D | M | 109 | 6D | m |
| 14 | E | [SHIFT OUT] | 46 | 2E | , | 78 | 4E | N | 110 | 6E | n |
| 15 | F | [SHIFT IN] | 47 | 2 F | 1 | 79 | 4F | 0 | 111 | 6F | 0 |
| 16 | 10 | [DATA LINK ESCAPE] | 48 | 30 | 0 | 80 | 50 | P | 112 | 70 | $p$ |
| 17 | 11 | [DEVICE CONTROL 1] | 49 | 31 | 1 | 81 | 51 | Q | 113 | 71 | q |
| 18 | 12 | [DEVICE CONTROL 2] | 50 | 32 | 2 | 82 | 52 | R | 114 | 72 | r |
| 19 | 13 | [DEVICE CONTROL 3] | 51 | 33 | 3 | 83 | 53 | S | 115 | 73 | S |
| 20 | 14 | [DEVICE CONTROL 4] | 52 | 34 | 4 | 84 | 54 | T | 116 | 74 | t |
| 21 | 15 | [NEGATIVE ACKNOWLEDGE] | 53 | 35 | 5 | 85 | 55 | U | 117 | 75 | u |
| 22 | 16 | [SYNCHRONOUS IDLE] | 54 | 36 | 6 | 86 | 56 | V | 118 | 76 | v |
| 23 | 17 | [ENG OF TRANS. BLOCK] | 55 | 37 | 7 | 87 | 57 | W | 119 | 77 | w |
| 24 | 18 | [CANCEL] | 56 | 38 | 8 | 88 | 58 | X | 120 | 78 | x |
| 25 | 19 | [END OF MEDIUM] | 57 | 39 | 9 | 89 | 59 | Y | 121 | 79 | y |
| 26 | 1A | [SUBSTITUTE] | 58 | 3 A | : | 90 | 5A | Z | 122 | 7 A | z |
| 27 | 1B | [ESCAPE] | 59 | 3B | ; | 91 | 5B | [ | 123 | 7B | \{ |
| 28 | 1C | [FILE SEPARATOR] | 60 | 3C | $<$ | 92 | 5C | 1 | 124 | 7 C |  |
| 29 | 1D | [GROUP SEPARATOR] | 61 | 3D | = | 93 | 5D | ] | 125 | 7D | \} |
| 30 | 1E | [RECORD SEPARATOR] | 62 | 3E | $>$ | 94 | 5E | $\wedge$ | 126 | 7E | $\sim$ |
| 31 | 1 F | [UNIT SEPARATOR] | 63 | 3F | ? | 95 | 5 F | - | 127 | 7F | [DEL] |

## ASCII Design

* ASCII:

American Standard Code for Information Interchange

* Designed to communicate American letters, numbers, and some control signals efficiently
- Used only 7 bits to minimize number of bits that need to be communicated
- Other languages not considered


## Unicode

* Unicode Standard UTF-8 is an alternate text encoding
- Uses between 8 and 32 bits for each "character"
- Characters include more than just English
- Characters include emojis
* Unicode table is a lot longer: https://unicode-table.com/en/


## Aside: Length Terminology

* Bit:
- a binary "digit", either a 1 or a 0
* Byte:
- 8 bits
- E.g., Ob11110111 or 0xF7
* Nibble:
- 4 bits
- E.g., Ob1011 or 0xB


## Data Lengths

* Computers are physical machines
- there is a limit to how many bytes we can store
* In C:
- int's are usually 4 bytes
- 4 bytes $=32$ bits $\rightarrow 2^{32}$ different values
- $2^{32}=4,294,967,296$
- char's are usually 1 byte
- 1 byte $=8$ bits $\rightarrow 2^{8}$ different values
- $2^{8}=256$


## Lecture Take-aways

* Bits are the "atom" of data for computers
* We can represent anything in binary by using different encodings!
- Numbers, colors, characters, emojis, code, etc..
* Our encodings/data is limited due to finite bits
- (More on this next time)

