# 2's Compliment, Floats <br> Introduction to Computer Systems, Fall 2022 

Instructor: Travis McGaha

## TAs:

Ali Krema
Audrey Yang
David LuoZhang
Heyi Liu
Katherine Wang
Noam Elul
Ria Sharma

Andrew Rigas
Craig Lee
Eddy Yang
Janavi Chadha
Kyrie Dowling
Patricia Agnes
Sarah Luthra

Anisha Bhatia
Daniel Duan
Ernest Ng
Jason Hom
Mohamed Abaker
Patrick Kehinde Jr.
Sofia Mouchtaris

## How was your three day weekend?

## Logistics pt. 1

* Pre-Semester Survey: Due Friday 9/9 @ 11:59 pm
- No late extensions for this
- Graded on completion
* Check in 00: Due Monday 9/12 @ 4:59 pm
- Check-ins are due before Monday lectures
- Make sure you are caught up with material relevant for new topics
- Unlimited attempts, public "tests"


## Logistics pt. 2

* HWOO Binary Quiz: Due Next Friday 9/16 @ 11:59 pm
- Quiz On Canvas
- Opens tonight at midnight
- Should have everything you need after this lecture (some topics will be covered more in depth in Monday's lecture tho)
* PollEverywhere Registration
- Will start counting participation next lecture
- Will leave polls open after this lecture so that people can "test" their registration.
* Some OH posted on the course website
* Recitation information coming soon


## Lecture Outline

* Binary Review
- What is binary
- Encodings
* Length Constraints
* 2's Compliment \& Integer Operations
* Floats


## Lecture 1 Take-aways

* A Bit is a Binary "Digit"
- Can contain the value of either a 0 or a 1

Bits are the "atom" of data for computers

* We can represent anything in binary by using different encodings!
- Numbers, colors, characters, emojis, code, etc..
- We also saw how we can do some of these conversions ourselves


## The Meaning of Bits

* A sequence of bits can have many meanings!
* Consider the hex sequence 0x4E6F21
- Common interpretations include:
- The decimal number 5140257
- The characters "No!"
- The background color of this slide
- The real number $7.203034 \times 10^{-39}$
* A series of bits can also be code!
* It is up to the program/programmer to decide how to interpret the sequence of bits


## Bits used to encode numbers

* Bits can be used to represent a number in base 2 format
- Each "bit" can represent 2 different values (1 or 0)
- Each "bit" is weighted by its position
* Example:

$\left(1^{*} 2^{2}\right)+\left(0^{*} 2^{1}\right)+\left(1^{*} 2^{0}\right)$
$4+$
$0+1$
5

To note that a value is in base 2 , a prefix ' 0 b ' is often used Example: 0b101

## (II) Poll Everywhere

## * What integer value does 0b00101010 represent?

A. 84
B. 48
C. 42
D. 38
E. I'm not sure

## (11) Poll Everywhere

 pollev.com/tqm* What integer value does 0b00101010 represent Ob00101010
A. 84
B. $48 \quad \ldots\left(1 * 2^{5}\right)+\left(0 * 2^{4}\right)+\left(1 * 2^{3}\right)+\left(0 * 2^{2}\right)+\left(1 * 2^{1}\right)+\left(0 * 2^{0}\right)$
C. $420+0+32+0+8+0+2+0$
D. 38
$32+8+2$
E. I'm not sure

42

## Decimal to Binary Conversion: Powers of 2

* Algorithm:
- Subtract the largest power of two <= number
- Put a one in the corresponding bit position
- Repeat until number is 0

| $n$ | $2^{n}$ |
| :--- | :--- |
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |
| 5 | 32 |
| 6 | 64 |
| 7 | 128 |
| 8 | 256 |
| 9 | 512 |
| 10 | 1024 |

## Decimal to Binary Conversion: Division

* Algorithm:
- Divide by two - remainder will be the next smallest bit
- Keep dividing until answer is 0
* Example: 104
- $104 / 2=52 \mathrm{r} 0 \quad$ bit 0 is 0
- $52 / 2=26 r 0 \quad$ bit 1 is 0
- $26 / 2=13 r 0 \quad$ bit 2 is 0
- $13 / 2=6 r 1 \quad$ bit 3 is 1
- $6 / 2=3 r 0 \quad$ bit 4 is 0
- $3 / 2=1 r 1 \quad$ bit 5 is 1
- $1 / 2=0 r 1$ bit 6 is 1
- $104=0 b 1101000$


## Hexadecimal

* Base 16 representation of numbers
* Allows us to represent binary with fewer "digits"
* Prefixes to identify the base
- $\underline{0 b 11110011==\underline{0 x F 3}}$ ${ }^{\wedge}$ binary
$\wedge$ hex
* Conversion examples
- 0b010 -> 0b0010 -> 0x2
- 0x1 -> Ob0001

| Decimal | Binary | Hex |
| :--- | :--- | :--- |
| 0 | 0000 | $0 \times 0$ |
| 1 | 0001 | $0 \times 1$ |
| 2 | 0010 | $0 \times 2$ |
| 3 | 0011 | $0 \times 3$ |
| 4 | 0100 | $0 \times 4$ |
| 5 | 0101 | $0 \times 5$ |
| 6 | 0110 | $0 \times 6$ |
| 7 | 0111 | $0 \times 7$ |
| 8 | 1000 | $0 \times 8$ |
| 9 | 1001 | $0 \times 9$ |
| 10 | 1010 | $0 \times A$ |
| 11 | 1011 | $0 \times B$ |
| 12 | 1100 | $0 \times C$ |
| 13 | 1101 | $0 \times D$ |
| 14 | 1110 | $0 \times E$ |
| 15 | 1111 | $0 \times F$ |

## Bits encoded to represent Characters

* We can encode binary values to represent characters


## ASCII TABLE

| Decimal | Hex | Char |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | [NULL] | 32 | 20 | [SPACE] | 64 | 40 | @ | 96 | 60 | , |
| 1 | 1 | [START OF HEADING] | 33 | 21 | ! | 65 | 41 | A | 97 | 61 | a |
| 2 | 2 | [START OF TEXT] | 34 | 22 | " | 66 | 42 | B | 98 | 62 | b |
| 3 | 3 | [END OF TEXT] | 35 | 23 | \# | 67 | 43 | C | 99 | 63 | c |
| 4 | 4 | [END OF TRANSMISSION] | 36 | 24 | \$ | 68 | 44 | D | 100 | 64 | d |
| 5 | 5 | [ENQUIRY] | 37 | 25 | \% | 69 | 45 | E | 101 | 65 | e |
| 6 | 6 | [ACKNOWLEDGE] | 38 | 26 | \& | 70 | 46 | F | 102 | 66 | f |
| 7 | 7 | [BELL] | 39 | 27 | ' | 71 | 47 | G | 103 | 67 | g |
| 8 | 8 | [BACKSPACE] | 40 | 28 | 1 | 72 | 48 | H | 104 | 68 | h |
| 9 | 9 | [HORIZONTAL TAB] | 41 | 29 | ) | 73 | 49 | I | 105 | 69 | i |
| 10 | A | [LINE FEED] | 42 | 2A | * | 74 | 4A | J | 106 | 6A | j |
| 11 | B | [VERTICAL TAB] | 43 | 2B | + | 75 | 4B | K | 107 | 6B | k |
| 12 | C | [FORM FEED] | 44 | 2C | , | 76 | 4C | L | 108 | 6C | I |
| 13 | D | [CARRIAGE RETURN] | 45 | 2D | - | 77 | 4D | M | 109 | 6D | m |
| 14 | E | [SHIFT OUT] | 46 | 2E | . | 78 | 4E | N | 110 | 6E | n |
| 15 | F | [SHIFT IN] | 47 | 2F | 1 | 79 | 4F | 0 | 111 | 6 F | 0 |
| 16 | 10 | [DATA LINK ESCAPE] | 48 | 30 | 0 | 80 | 50 | P | 112 | 70 | $p$ |
| 17 | 11 | [DEVICE CONTROL 1] | 49 | 31 | 1 | 81 | 51 | Q | 113 | 71 | q |
| 18 | 12 | [DEVICE CONTROL 2] | 50 | 32 | 2 | 82 | 52 | R | 114 | 72 | r |
| 19 | 13 | [DEVICE CONTROL 3] | 51 | 33 | 3 | 83 | 53 | S | 115 | 73 | S |
| 20 | 14 | [DEVICE CONTROL 4] | 52 | 34 | 4 | 84 | 54 | T | 116 | 74 | t |
| 21 | 15 | [NEGATIVE ACKNOWLEDGE] | 53 | 35 | 5 | 85 | 55 | U | 117 | 75 | u |
| 22 | 16 | [SYNCHRONOUS IDLE] | 54 | 36 | 6 | 86 | 56 | V | 118 | 76 | $v$ |
| 23 | 17 | [ENG OF TRANS. BLOCK] | 55 | 37 | 7 | 87 | 57 | W | 119 | 77 | w |
| 24 | 18 | [CANCEL] | 56 | 38 | 8 | 88 | 58 | X | 120 | 78 | x |
| 25 | 19 | [END OF MEDIUM] | 57 | 39 | 9 | 89 | 59 | Y | 121 | 79 | y |
| 26 | 1A | [SUBSTITUTE] | 58 | 3A | : | 90 | 5A | Z | 122 | 7 A | z |
| 27 | 1B | [ESCAPE] | 59 | 3B | ; | 91 | 5B | [ | 123 | 7B | \{ |
| 28 | 1C | [FILE SEPARATOR] | 60 | 3C | $<$ | 92 | 5C | 1 | 124 | 7 C | I |
| 29 | 1D | [GROUP SEPARATOR] | 61 | 3D | = | 93 | 5D | ] | 125 | 7D | \} |
| 30 | 1E | [RECORD SEPARATOR] | 62 | 3E | $>$ | 94 | 5E | $\wedge$ | 126 | 7E | $\sim$ |
| 31 | 1 F | [UNIT SEPARATOR] | 63 | 3 F | ? | 95 | 5 F | - | 127 | 7F | [DEL] |

## Any questions on the content introduced in

## last lecture?

## Lecture Outline

* Binary Review
- What is binary
- Encodings
* Length Constraints
* 2's Compliment \& Integer Operations
* Floats


## Aside: Length Terminology

* Bit:
- a binary "digit", either a 1 or a 0
* Byte:
- 8 bits (two hexadecimal digits)
- E.g., Ob11110111 or 0xF7
* Nibble:
- 4 bits (one hexadecimal digit)
- E.g., Ob1011 or 0xB


## Data Lengths

* Computers are physical machines
- there is a limit to how many bits/bytes we can store
* In C:
- char's are usually 1 byte ( 8 bits)
- 1 byte $=8$ bits $\rightarrow 2^{8}$ different values
- $2^{8}=256$
- int's are usually 4 bytes ( 32 bits)
- 4 bytes $=32$ bits $\rightarrow 2^{32}$ different values
- $2^{32}=4,294,967,296$
* N bits represents $2^{\mathrm{N}}$ possible values


## Aside: Bit Significance

* Most Significant Bit (MSB):
- If we treat the bits as an integer, the bit that most affects the magnitude of the binary integer
- (The left most bit)
* Least Significant Bit (LSB):
- If we treat the bits as an integer, the bit that least affects the magnitude of the binary integer
- (The right most bit)
* Example with 4 bits:



## Signed Numbers?

* With our current understanding of number encoding, a 4-byte int can contain any value between 0 and $2^{32}-1$
* How do we store negative values?
- Common initial Guess: have an additional bit dedicated for the "sign", 0 means positive, 1 is negative.
- This leads to the existence of ' 0 ' and ' -0 '
- leads to awkwardness with how arithmetic is done
- Instead, we use Two's compliment!


## 2's Compliment

* Except for the Most Significant Bit (MSB), it is the same as unsigned.
- MSB is equal to its normal value in unsigned, but negated
* Consider the 4-bit number: 1011
* Unsigned:

1011
$\left(1 * 2^{3}\right)+\left(0 * 2^{2}\right)+\left(1 * 2^{1}\right)+\left(1 * 2^{0}\right)$
$2^{3}+2^{1}+2^{0}$
$8+2+1$
11

Signed 2C:
1011
$\left(-1 * 2^{3}\right)+\left(0 * 2^{2}\right)+\left(1 * 2^{1}\right)+\left(1 * 2^{0}\right)$
$\left(-1 * 2^{3}\right)+2^{1}+2^{0}$
$-8+2+1$
-5

## (II) Poll Everywhere

* What 2C integer value does 0 b1110 represent?
- Assuming an integer is 4 bits in this scenario
A. -1
B. -2
C. -3
D. 0
E. I'm not sure


## (II) Poll Everywhere

 pollev.com/tqm* What 2C integer value does 0 b1110 represent?
- Assuming an integer is 4 bits in this scenario
A. -1


## B. -2

C. -3
D. 0

$$
\begin{gathered}
1110 \\
\left(-1 * 2^{3}\right)+\left(1 * 2^{2}\right)+\left(1 * 2^{1}\right)+\left(0 * 2^{0}\right) \\
\left(-1 * 2^{3}\right)+2^{2}+2^{1} \\
-8+4+2 \\
-2
\end{gathered}
$$

E. I'm not sure

## Binary Addition

* Binary Addition works just like base-10
- Add from right to left, propagating carry
- Turns out, this works for both unsigned and 2C numbers (4-bit integers in this example)

|  | Unsigned values | 2C values |
| :---: | :---: | :---: |
| 10 | $(10)$ | $(-6)$ |
|  | $(3)$ | $(3)$ |
|  | $(13)$ | $(-3)$ |

## Binary Addition: Overflow

* Real Integers are infinite
* ints have finite width, limited by hardware
* Overflow: when an operation's result is too large to fit in the type's range
- Not always "problematic"
* Example with two 4-bit integers:

| Anm | Unsigned values | 2 C values | Note: 20 <br> overflow can still be problematic |
| :---: | :---: | :---: | :---: |
| 1111 | (15) | (-1) |  |
| - 0001 | (1) | (1) |  |
| 10000 | (0) | (0) |  |
| 10000 | problematic | correct result |  |
|  | with unsigned : | with 2C - |  |

(11) Poll Everywhere pollev.com/tqm

* Is there problematic overflow if we add the following 4-bit 2C numbers? Ob1110 + Ob1001
A. Yes, there is
problematic overflow
B. No, there is not
problematic overflow
C. I'm not sure


## (II) Poll Everywhere

 pollev.com/tqm* Is there problematic overflow if we add the following 4-bit 2C numbers? Ob1110 + Ob1001
A. Yes, there is
problematic overflow
B. No, there is not problematic overflow
C. I'm not sure

2C values

| $\curvearrowleft$ |
| ---: |
| 1110 |
| $+\quad 1001$ |
| 10111 |$\quad(-2)$

Generally speaking:
Addition can only overflow 1 bit

- Unsigned: Any "extra bit" is problematic
- with 2C,
if the MSB of the two inputs are the same,
but MSB of output is different,
overflow is problematic


## 2C Negation

* If we have a 2 C bit pattern, we can negate the number by flipping each bit and then adding 1
* Example with 4-bit 2c numbers:



## Binary Subtraction

* To perform subtraction of two 2C numbers ( $\mathrm{X}-\mathrm{Y}$ ), you can just negate $Y$ and then add
- $(X-Y)=X+(-Y)$

(1)


## Decimal -> 2c

* How do we convert a decimal number to a 2's Compliment (2C) number?
* Consider the number: 3
- Positive number, so do the same thing we did for binary numbers previously
* Consider the number: -3
- Find the bit pattern for +3 and then negate the bit pattern


## Lecture Outline

* Binary Review
- What is binary
- Encodings
* Length Constraints
* 2's Compliment \& Integer Operations
* Floats


## Non-whole numbers

* We can now represent numbers that are negative or positive, how can we represent numbers that aren't whole? (e.g 240.25)


## Fixed Point Notation

* What if we stuck an implicit "binary point" into our integer representation
- "Binary point" is analogous to a "decimal point"
* 2C addition and subtraction still work

Problem:
How do we represent values like
$6.626 \times 10^{-34}$ ?
Fixed point would require 110 bits

$$
2^{-1}=0.5
$$

00101000.101 (40.625)
$+11111110.110(-1.25)$
00100111.011 (39.375)

## Aside: Scientific Notation

* In Decimal: - 2.5 * 101

$$
=-25
$$

- Sign: whether we are negative or positive
- Ones place: Always starts with a non-zero digit
- (unless overall expression is 0 )
- Mantissa: Everything after the decimal point
- Exponent: We are in base 10 , so we raise 10 to this value


## Binary Scientific Notation

* Scientific notation in Binary: - $1.1001 * 2^{4}$
- Sign: whether we are negative or positive
- Ones place: Always starts with a non-zero 'bit'
- (unless overall expression is 0) A non-zero bit must be 1! This 1 can be implicit
- Mantissa: Everything after the binary point
- Exponent: We are in base 2 , so we raise 2 to this value
* We can represent a scientific notation binary number with only the Sign, Mantissa, and Exponent


## IEEE Floating Point Notation

* We can represent a scientific notation binary number with only the Sign, Mantissa, and Exponent
* Allocate 32 bits, with
- First bit goes to the Sign (1 for negative, 0 for non-negative)
- The next 8 bits go to the Exponent +127 (as an unsigned 8 -bit int)
- This means the exponent must fall between -127 and 128
- The rest (23 bits) goes to the Mantissa
$\downarrow$ exponent + 127



## IEEE Floating Point Example

* Consider -0.75
- Mark the sign bit then ignore it
- Convert number to fixed point binary
- Similar strategies to decimal -> unsigned int
- Multiply by ' 1 ’
$0.11=0.11^{*} 2^{0}$
- Shift the point by changing the exponent
- Shift bits to the left: decrement exponent
- Shifting bits to the right: increment exponent
- Add bias to the exponent then store Exponent $=-1+$ bias $=126$
- "bias" for floats is 127
- Store mantissa $1.1^{*} 2^{-1}$
- Truncate extra bits, or pad out with 0's if not enough
1
0

11


