Combinational Logic Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema
Audrey Yang
David LuoZhang
Heyi Liu
Katherine Wang
Noam Elul
Ria Sharma

Andrew Rigas
Craig Lee
Eddy Yang
Janavi Chadha
Kyrie Dowling
Patricia Agnes
Sarah Luthra

Anisha Bhatia
Daniel Duan
Ernest Ng
Jason Hom
Mohamed Abaker
Patrick Kehinde Jr.
Sofia Mouchtaris

How Many CU's are you taking? (including this class)

6 or more
5 or 5.5
4 or 4.5
3 or 3.5
2 or 2.5
less than 2

Logistics

: HW01 bits.c: This Friday 9/16 @ 11:59 pm

- Will require VM setup
- Has you "program" in C
- Should have everything you need
- Terminal \& starting demo in Recitations this week
* HWO2 Combinational Logic: to be released this week
- Written Homework, submitted to gradescope
- NO EXTENSIONS OVER 72 HOURS
* Check-in01: Due Monday @ 4:59 pm
- Coming out soon

Lecture Outline

* Incrementor
* Adder \& Subtracter
* Mux
* Multiplier \& Others

Combinational Logic

* Boolean functions where the output is a pure function of the inputs
- There is no "memory" or "stored state"
* So far, we have basic logic gates from last lecture:

* We can build more complex "gates" that we can use as building blocks for a processor
* This Lecture: start implementing binary arithmetic $>$:]

Aside: XOR Gate

* Performs the XOR operation

A	B	OUT
0	0	0
0	1	1
1	0	1
1	1	0

Creating an Incrementor

* Let's create a 16-bit incrementor!
- Input: A (as a 16 bit 2C integer)
- Output: S = A + 1 (as a 16-bit 2C integer)

0000000011001011
+0000000000000001 $\overline{0000000011001100}$

- Ignore the overflow case for now

* Theoretical Approach:
- Use a PLA-like technique to implement the circuit
- Problem: 2^{16} or 65536 different inputs, 16-bit output
- This is impractical

One Bit Incrementor "PLA"

* Implementing a single-column of an incrementor Carryln $_{n}$ $\begin{array}{r}0000000011001011 \\ +0000000000000 \mathrm{~d} 9 \\ \hline 0000000011001100\end{array}$
- Inputs: A_{n}, Carry $_{\text {in }}$
- Outputs: S_{n}, Carry $_{\text {out }}$

(11) Poll Everywhere

 pollev.com/tqm* Which of the follow is an equivalent expression for S_{n} ?
A. $\left(A_{n} \& \sim C_{i n}\right) \&\left(\sim A_{n} \& C_{i n}\right)$
B. $\left(A_{n} \mid{ }^{\sim} C_{i n}\right) \&\left(\sim A_{n} \mid C_{i n}\right)$
C. $\sim\left(C_{i n} \wedge A_{n}\right)$
D. $\mathrm{A}_{\mathrm{n}}{ }^{\wedge} \mathrm{C}_{\mathrm{in}}$

$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{C}_{\mathbf{i n}}$	$\mathbf{S}_{\mathbf{n}}$
0	0	0
0	1	1
1	0	1
1	1	0

E. I'm not sure

(11) Poll Everywhere

 pollev.com/tqm* Which of the follow is an equivalent expression for S_{n} ?
A. $\left(A_{n} \& \sim C_{i n}\right) \&\left(\sim A_{n} \& C_{i n}\right)$
B. $\left(A_{n} \mid \sim^{\sim} C_{i n}\right) \&\left(\sim A_{n} \mid C_{i n}\right)$
C. $\sim\left(C_{i n} \wedge A_{n}\right)$
D. $A_{n}{ }^{\wedge} C_{i n}$

A is xor

$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{C}_{\text {in }}$	$\mathbf{S}_{\mathbf{n}}$
0	0	0
0	1	1
1	0	1
1	1	0

E. I'm not sure

One Bit Incrementor Alternative

* Can implement with an XOR gate instead

N-bit Incrementor

* We can chain the 1-bit Incrementors together
- Carry-out for bit N, is Carry-in for bit N+1
* 4-bit Incrementor example:

N-bit incrementor LSB

* How do we handle the Least significant bit?

Lecture Outline

* Incrementor
* Adder \& Subtracter
* Mux
* Multiplier \& Others

Adder

* Similar to incrementor, but doesn't quite work:
- Incrementor only had to add 2 bits

- Works for the LSB, since there is no "carry in" for the LSB
- Bits other than the LSB may need to add two bits + carry in

One-Bit Adder

* Like incrementor, we will build a 1-bit component first
* Start from a truth table
* Create a PLA from it

A	B	$C_{\text {in }}$	S	$C_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

This is just two PLAs
fused on the common input
$\mathrm{C}_{\text {out }}$

N-Bit Adder

CarryOut: useful for detecting overflow

Carryln: assumed to be zero if not present

Aside: Efficiency

* Full Disclosure:
- Our adder: Ripple-carry adder
- No one really uses ripple-carry adders
- Why? way too slow
- Latency proportional to n
* We can do better:
- Many ways to create adders with latency proportional to $\log _{2}(n)$
- In theory: constant latency (build a big PLA)
- In practice: too much hardware, too many high-degree gates
- "Constant factor" matters, too
- If you continue to CIS 471, you'll encounter "carry look ahead adders", more efficient architecture

Subtractor

* Build a subtractor from an adder
- Calculate $A-B=A+-B$
- Negate B
- Recall $-\mathrm{B}=\mathrm{NOT}(\mathrm{B})+1$

We "carry in" a 1
(no longer need incrementer)
Approach \#2

Why is approach \#2 better?

Can we combine this with the adder?

Lecture Outline

* Incrementor
* Adder \& Subtracter
* Mux
* Multiplier \& Others

The Multiplexer

* Selector/Chooser of signals
* Shorthand: "Mux"

Note: selector bits map all "0" to he top input, and increment each input "down"

If you don't want to follow this ordering, label your mux in the HW

Input " S " selects A or B to attach to " O " output Acts like an "IF/ELSE" statement

4-to-1 Mux

The Multiplexor In General

* In General
- N select bits chooses from 2^{N} inputs
- An incredibly useful building block
* Multi-bit Muxes
- Can switch an entire "bus" or group of signals
- Switch n-bits with n muxes with the same select bits

(11) Poll Everywhere

 pollev.com/tqm* What is the output of the following mux with selector bits 10
A. 10
B. 01
C. 00
D. 11

E. I'm not sure

(11) Poll Everywhere

 pollev.com/tqm*What is the output of the following mux with selector bits 10
A. 10
B. 01
C. 00
D. 11

E. I'm not sure

Adder/Subtractor - Approach \#1

Subtractor

Adder/Subtractor

Adder/Subtractor - Approach \#2

Adder/Subtractor

Lecture Outline

* Incrementor
* Adder \& Subtracter
* Mux
* Multiplier \& Others

Creating a Multiplier

* Combinational Multiplier using adders \& muxes
- Let's build a 4-bit multiplier that makes an 8-bit product
- Recall: shifting is the same as multiplying by powers of 2
- Notation in this example: B[0], means LSB bit of B

Arithmetic Algos

* Multiplication:
- More time efficient algos exist(Karatsuba and others)
* Divide/mod?
- Much harder than multiplication
- Most implementations are not combinational, but are sequential (more on sequential logic starting next lecture)
* Bitwise ops (AND, OR, XOR, ...)
- Easy
* Arbitrary left-right shift
- Can be done with just muxes (try it if you want!)

