
CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Combinational Logic
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

2

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Logistics

❖ HW01 bits.c: This Friday 9/16 @ 11:59 pm

▪ Will require VM setup

▪ Has you “program” in C

▪ Should have everything you need

▪ Terminal & starting demo in Recitations this week

❖ HW02 Combinational Logic: to be released this week

▪ Written Homework, submitted to gradescope

▪ NO EXTENSIONS OVER 72 HOURS

❖ Check-in01: Due Monday @ 4:59 pm

▪ Coming out soon

3

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

4

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Combinational Logic

❖ Boolean functions where the output is a pure function of
the inputs

▪ There is no “memory” or “stored state”

❖ So far, we have basic logic gates from last lecture:

❖ We can build more complex "gates" that we can use as
building blocks for a processor

❖ This Lecture: start implementing binary arithmetic >:]

5

AND ORNOT/INV NAND NOR

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Aside: XOR Gate

❖ Performs the XOR operation

6

A B OUT

0 0 0

0 1 1

1 0 1

1 1 0

B

A
OUT

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Creating an Incrementor

❖ Let's create a 16-bit incrementor!

▪ Input: A (as a 16 bit 2C integer)

▪ Output: S = A + 1 (as a 16-bit 2C integer)

▪ Ignore the overflow case for now

❖ Theoretical Approach:

▪ Use a PLA-like technique to implement the circuit

▪ Problem: 216 or 65536 different inputs, 16-bit output

▪ This is impractical

7

+1 SA
16 16

0000000011001011
+0000000000000001

0000000011001100

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

One Bit Incrementor "PLA"

❖ Implementing a single-column of an incrementor

▪ Inputs: An, Carryin

▪ Outputs: Sn, Carryout

8

0000000011001011
+0000000000000001

0000000011001100

An Cin Sn Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

An Cin

Sn

Cout

+ SnAn

1 1

CarryInn

CarryOutn

(Ignore LSB for now)

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CMOS Examples #1

9

❖ Which of the follow is an equivalent expression for Sn?

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B. (An | ~Cin) & (~An | Cin)

C. ~(Cin ^ An)

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CMOS Examples #1

10

❖ Which of the follow is an equivalent expression for Sn?

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B. (An | ~Cin) & (~An | Cin)

C. ~(Cin ^ An)

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0^ is xor

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

One Bit Incrementor Alternative

❖ Can implement with an XOR gate instead

11

An Cin

Sn

An Cin

Sn

Cout Cout

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

N-bit Incrementor

❖ We can chain the 1-bit Incrementors together

▪ Carry-out for bit N, is Carry-in for bit N+1

❖ 4-bit Incrementor example:

12

+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

+ S3A3

1 1
CarryIn3

CarryOut3

…but how do we
start off the least-significant bit?

+1 SA
4 4

4-bit incrementer
“implemented” using 4
1-bit half-adders

Can easily scale to 16-bits

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

N-bit incrementor LSB

❖ How do we handle the Least significant bit?

13

00001011
+00000001

00001100
+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

. . .

00001011
+00000000

00001100

Cin = 1

No longer needed;
implicitly encoded
with Cin

1

We “carry in” a 1

How do we
handle the
initial 1?

REMEMBER: This is all made of logic gates

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

14

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Adder

❖ Similar to incrementor, but doesn’t quite work:

▪ Incrementor only had to add 2 bits

▪ Works for the LSB, since there is no “carry in” for the LSB

▪ Bits other than the LSB may need to add two bits + carry in

15

HA SumA

B

CarryOut (Cout)

1
+ 1
1 0

A

B

SumCout

1 1
+ 1 1
1 1 0

A

B

Sum

Cin

Cout

1

FA Sum
A

CarryIn

CarryOut

B

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

One-Bit Adder

❖ Like incrementor, we will build a 1-bit component first

❖ Start from a truth table

❖ Create a PLA from it

16

0

1

0

0

1

1

1

0

1

0

1

1

0

0

1

0

110

001

101

011

S

1

1

0

0

B

10

00

1

0

A

1

0

CoutCin

Add Sn

An

1
1

CarryInn

CarryOutn

Bn

1

This is just two PLAs

fused on the common input

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CarryIn

N-Bit Adder

. . .

Add S0

A0

CarryIn0

CarryOut0

B0

Add S1

A1

CarryIn1

CarryOut1

B1

Add S2

A2

CarryIn2

CarryOut2

B2

CarryIn

CarryOut

A

B

S
n

n

n

CarryOut: useful for
detecting overflow

CarryIn: assumed to be zero
if not present

+

17

Gate Level

Abstraction

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Aside: Efficiency

❖ Full Disclosure:

▪ Our adder: Ripple-carry adder

▪ No one really uses ripple-carry adders

▪ Why? way too slow

▪ Latency proportional to n

❖ We can do better:

▪ Many ways to create adders with latency proportional to log2(n)

▪ In theory: constant latency (build a big PLA)

▪ In practice: too much hardware, too many high-degree gates

▪ “Constant factor” matters, too

▪ If you continue to CIS 471, you’ll encounter “carry look ahead
adders”, more efficient architecture

18

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Subtractor

❖ Build a subtractor from an adder

▪ Calculate A – B = A + –B

▪ Negate B

▪ Recall –B = NOT(B) + 1

19

B
16

a
d

d
e

r

CarryIn

S
16

16
+1

16

A

16

Approach #1

a
d

d
e

r

S
16

B
16 16

A

16 CarryIn
1

Approach #2

We “carry in” a 1
(no longer need incrementer)

Why is approach #2 better?

Can we combine this with the adder?

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

20

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

The Multiplexer

❖ Selector/Chooser of signals

❖ Shorthand: "Mux"

21

0 1

2-to-1 Mux

00

2

01

2

10

2

11

2

4-to-1 Mux

S

O

B

A

A

B

S=

O

Input “S” selects A or B to attach to “O” output
Acts like an “IF/ELSE” statement

Note: selector bits map all “0”

to he top input, and increment

each input “down”

If you don’t want to follow this

ordering, label your MUX in the HW

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

The Multiplexor In General

❖ In General

▪ N select bits chooses from 2N inputs

▪ An incredibly useful building block

❖ Multi-bit Muxes

▪ Can switch an entire “bus” or group of signals

▪ Switch n-bits with n muxes with the same select bits

22

S

216

16

16

16

16

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CMOS Examples #1

23

❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B. 01

C. 00

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CMOS Examples #1

24

❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B. 01

C. 00

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

A

B

16

16

16

16

16

1 16
S

Add/Sub

25

Adder/Subtractor - Approach #1

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

CarryIn

S
16A

16

16
B 16

Add/Sub
1

26

CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

Adder/Subtractor - Approach #2

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

27

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Creating a Multiplier

❖ Combinational Multiplier using adders & muxes

▪ Let’s build a 4-bit multiplier that makes an 8-bit product

▪ Recall: shifting is the same as multiplying by powers of 2

▪ Notation in this example: B[0], means LSB bit of B

28

+

8

5

5

A

00000

7

+

6

+

B[1]=0

B[0]=1

6

A<<2

0

B[2]=1

B[3]=0

1101

x 0101

01101

00000

110100

+ 0000000

01000001

1310

510

6510

A=
B=

(01101)

5

A<<1

00000

(11010)

(110100)

01000001

7

A<<3

0

(1101000)

CIS 2400, Fall 2022L05: Combinational LogicUniversity of Pennsylvania

Arithmetic Algos

❖ Multiplication:

▪ More time efficient algos exist(Karatsuba and others)

❖ Divide/mod?

▪ Much harder than multiplication

▪ Most implementations are not combinational, but are sequential
(more on sequential logic starting next lecture)

❖ Bitwise ops (AND, OR, XOR, …)

▪ Easy

❖ Arbitrary left-right shift

▪ Can be done with just muxes (try it if you want!) 29

