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Logistics

❖ HW01 bits.c: This Friday 9/16 @ 11:59 pm

▪ Will require VM setup

▪ Has you “program” in C

▪ Should have everything you need

▪ Terminal & starting demo in Recitations this week

❖ HW02 Combinational Logic: to be released this week

▪ Written Homework, submitted to gradescope

▪ NO EXTENSIONS OVER 72 HOURS

❖ Check-in01: Due Monday @ 4:59 pm

▪ Coming out soon
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Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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Combinational Logic

❖ Boolean functions where the output is a pure function of 
the inputs 

▪ There is no “memory” or “stored state”

❖ So far, we have basic logic gates from last lecture:

❖ We can build more complex "gates" that we can use as 
building blocks for a processor

❖ This Lecture: start implementing binary arithmetic >:]
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AND ORNOT/INV NAND NOR
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Aside: XOR Gate

❖ Performs the XOR operation
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A B OUT

0 0 0

0 1 1

1 0 1

1 1 0

B

A
OUT
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Creating an Incrementor

❖ Let's create a 16-bit incrementor!

▪ Input: A (as a 16 bit 2C integer)

▪ Output: S = A + 1 (as a 16-bit 2C integer)

▪ Ignore the overflow case for now

❖ Theoretical Approach:

▪ Use a PLA-like technique to implement the circuit

▪ Problem: 216 or 65536 different inputs, 16-bit output

▪ This is impractical
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+1 SA
16 16

0000000011001011
+0000000000000001

0000000011001100
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One Bit Incrementor "PLA"

❖ Implementing a single-column of an incrementor

▪ Inputs: An, Carryin 

▪ Outputs: Sn, Carryout
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0000000011001011
+0000000000000001

0000000011001100

An Cin Sn Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

An Cin

Sn

Cout

+ SnAn

1 1

CarryInn

CarryOutn

(Ignore LSB for now)
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CMOS Examples #1
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❖ Which of the follow is an equivalent expression for Sn? 

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B.   (An | ~Cin) & (~An | Cin) 

C. ~(Cin ^ An)          

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0
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CMOS Examples #1
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❖ Which of the follow is an equivalent expression for Sn? 

pollev.com/tqm

A. (An & ~Cin) & (~An & Cin)

B.   (An | ~Cin) & (~An | Cin) 

C. ~(Cin ^ An)          

D. An ^ Cin

E. I’m not sure

An Cin Sn

0 0 0

0 1 1

1 0 1

1 1 0^ is xor
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One Bit Incrementor Alternative

❖ Can implement with an XOR gate instead
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An Cin

Sn

An Cin

Sn

Cout Cout
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N-bit Incrementor

❖ We can chain the 1-bit Incrementors together

▪ Carry-out for bit N, is Carry-in for bit N+1

❖ 4-bit Incrementor example:
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+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

+ S3A3

1 1
CarryIn3

CarryOut3

…but how do we
start off the least-significant bit?

+1 SA
4 4

4-bit incrementer
“implemented” using 4
1-bit half-adders

Can easily scale to 16-bits
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N-bit incrementor LSB

❖ How do we handle the Least significant bit?
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00001011
+00000001

00001100
+ S0A0

1 1
CarryIn0

CarryOut0

+ S1A1

1 1
CarryIn1

CarryOut1

+ S2A2

1 1
CarryIn2

CarryOut2

. . .

00001011
+00000000

00001100

Cin = 1

No longer needed;
implicitly encoded 
with Cin

1

We “carry in” a 1

How do we 
handle the 
initial 1?

REMEMBER: This is all made of logic gates
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Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others

14



CIS 2400, Fall 2022L05:  Combinational LogicUniversity of Pennsylvania

Adder

❖ Similar to incrementor, but doesn’t quite work:

▪ Incrementor only had to add 2 bits

▪ Works for the LSB, since there is no “carry in” for the LSB

▪ Bits other than the LSB may need to add  two bits + carry in
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HA SumA

B

CarryOut (Cout)

1
+   1
1 0

A

B

SumCout

1 1
+   1 1
1 1 0

A

B

Sum

Cin

Cout

1

FA Sum
A

CarryIn

CarryOut

B
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One-Bit Adder

❖ Like incrementor, we will build a 1-bit component first

❖ Start from a truth table

❖ Create a PLA from it
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0

1

0

0

1

1

1

0

1

0

1

1

0

0

1

0

110

001

101

011

S

1

1

0

0

B

10

00

1

0

A

1

0

CoutCin

Add Sn

An

1
1

CarryInn

CarryOutn

Bn

1

This is just two PLAs 

fused on the common input
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CarryIn

N-Bit Adder

. . .

Add S0

A0

CarryIn0

CarryOut0

B0

Add S1

A1

CarryIn1

CarryOut1

B1

Add S2

A2

CarryIn2

CarryOut2

B2

CarryIn

CarryOut

A

B

S
n

n

n

CarryOut: useful for 
detecting overflow

CarryIn: assumed to be zero 
if not present

+

17

Gate Level

Abstraction
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Aside: Efficiency 

❖ Full Disclosure:

▪ Our adder: Ripple-carry adder

▪ No one really uses ripple-carry adders

▪ Why? way too slow

▪ Latency proportional to n

❖ We can do better:

▪ Many ways to create adders with latency proportional to log2(n)

▪ In theory: constant latency (build a big PLA)

▪ In practice: too much hardware, too many high-degree gates

▪ “Constant factor” matters, too

▪ If you continue to CIS 471, you’ll encounter “carry look ahead 
adders”, more efficient architecture
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Subtractor

❖ Build a subtractor from an adder

▪ Calculate A – B = A + –B

▪ Negate B

▪ Recall –B = NOT(B) + 1

19

B
16

a
d

d
e

r

CarryIn

S
16

16
+1

16

A

16

Approach #1

a
d

d
e

r

S
16

B
16 16

A

16 CarryIn
1

Approach #2

We “carry in” a 1
(no longer need incrementer)

Why is approach #2 better?

Can we combine this with the adder?
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Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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The Multiplexer

❖ Selector/Chooser of signals

❖ Shorthand: "Mux"
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0 1

2-to-1 Mux

00

2

01

2

10

2

11

2

4-to-1 Mux

S

O

B

A

A

B

S=

O

Input “S” selects A or B to attach to “O” output
Acts like an “IF/ELSE” statement

Note: selector bits map all “0” 

to he top input, and increment 

each input “down”

If you don’t want to follow this 

ordering, label your MUX in the HW
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The Multiplexor In General

❖ In General

▪ N select bits chooses from 2N inputs

▪ An incredibly useful building block

❖ Multi-bit Muxes

▪ Can switch an entire “bus” or group of signals

▪ Switch n-bits with n muxes with the same select bits

22

S

216

16

16

16

16
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CMOS Examples #1
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❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B.   01 

C. 00         

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10
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CMOS Examples #1

24

❖ What is the output of the following mux with selector bits 10

pollev.com/tqm

A. 10

B.   01 

C. 00         

D. 11

E. I’m not sure

10

2

2

2

2

2

2
00

01

11

10
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CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

A

B

16

16

16

16

16

1 16
S

Add/Sub

25

Adder/Subtractor - Approach #1
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CarryIn

S
16A

16

16
B 16

Add/Sub
1
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CarryIn

CarryOut

A

B

S
16

16

16

Adder

CarryIn

A

B

S
16

16

16 16

1

Subtractor

Adder/Subtractor

Adder/Subtractor - Approach #2
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Lecture Outline

❖ Incrementor

❖ Adder & Subtracter

❖ Mux

❖ Multiplier & Others
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Creating a Multiplier

❖ Combinational Multiplier using adders & muxes

▪ Let’s build a 4-bit multiplier that makes an 8-bit product

▪ Recall: shifting is the same as multiplying by powers of 2

▪ Notation in this example: B[0], means LSB bit of B

28

+

8

5

5

A

00000

7

+

6

+

B[1]=0

B[0]=1

6

A<<2

0

B[2]=1

B[3]=0

1101

x 0101

-------------

01101

00000

110100

+ 0000000

-------------

01000001

1310

510

6510

A=
B=

(01101)

5

A<<1

00000

(11010)

(110100)

01000001

7

A<<3

0

(1101000)
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Arithmetic Algos

❖ Multiplication:

▪ More time efficient algos exist(Karatsuba and others) 

❖ Divide/mod?

▪ Much harder than multiplication

▪ Most implementations are not combinational, but are sequential
(more on sequential logic starting next lecture)

❖ Bitwise ops (AND, OR, XOR, …)

▪ Easy

❖ Arbitrary left-right shift

▪ Can be done with just muxes (try it if you want!) 29


