
CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

PennSim & LC4 Memory
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

2

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Logistics

❖ HW03 Sequential Logic: This Friday 10/7 @ 11:59 pm

▪ Written Homework, submitted to gradescope

▪ NO EXTENSIONS OVER 72 HOURS

▪ Should have everything you need

▪ Practice in Recitations this week

❖ HW04 LC4 Programming: to be released this Friday

▪ Programming assignment

▪ May not have everything you need until Monday’s lecture

❖ Check-in04 to be released tomorrow

3

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

In-Person Lecture Policies

❖ I ask that you wear a mask in lecture

❖ If you are using your electronics (outside of polls), please
sit in the back

▪ Having electronics out make it a lot easier to distracted by
random notifications

▪ Easy for people sitting nearby & behind you to get distracted by
your distractions

4

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Lecture Outline

❖ ASM Files, Object Files, PennSim Demo

❖ LC4 Program Design (if/while/for)

❖ LC4 Memory

5

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

More LC4 Syntax

❖ Integer Immediates (CONST, HICONST, ADD, SLL, etc.)
can be either in hexadecimal or in decimal form
▪ Hexadecimal constants 0xFF or xFF

▪ Decimal constants: #240, #-240

❖ Comments

▪ Comments in LC4 are preceded by a ;

❖ Example:

6

CONST R0, 0x20

CONST R1, x10

CONST R2, #64

; this is a comment

DIV R3, R2, R1 ; this is a comment too

ADD R3, R3, R0

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Labels

❖ It can be cumbersome to calculate offsets for jumps.

❖ LC4 assembler allows us to put labels on memory. We can
use labels for Jumps and Branch instructions to make our
lives easier

▪ A Label is just a “name” for a memory location. Like how we can
refer to a memory location with an address.

❖ Example:

7

CONST R0, #5

CONST R1, #2

CONST R2, #0

LOOP ADD R2, R2, #1

SUB R0, R0, R1

BRp LOOP

END JMP #-1

Labels

Assembler will calculate the
offset to the specified label
for us

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Code in Memory

❖ An instruction fits in 1 memory location (16 bits)

❖ These instructions are stored in memory and accessed
sequentially

▪ When we trace through the code, we are just accessing the next
location in memory

8

CONST R0, #32

CONST R1, #16

CONST R2, #64

DIV R3, R2, R1

ADD R3, R3, R0

SUB R0, R2, R3

0 0x9020

1 0x9210

2 0x9440

3 0x1699

4 0x1681

5 0x1093

6 0x0102

Index #
(Address)

Information
(Data)

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Memory Layout

❖ The address space in LC4 is
split into separate pieces for
code and for data

❖ Separate regions for OS and
User as well (more on OS in
~2 weeks)

❖ More to memory than this,
but that will be discussed
later

9

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 ASM Directives

❖ We can include directives to indicate where things in our
ASM program should be loaded into memory
▪ .CODE

• Next instructions are in the CODE space

▪ .DATA

• Next values are in the DATA space

▪ .ADDR

• Set the current address to the specified value

❖ Other directives exist, more on those later

10

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Example .asm file

11

;; Multiplication program

;; C = A*B

;; R0 = A, R1 = B, R2 = C

.CODE ; This is a code segment

.ADDR 0x0000 ; Start filling in instructions at

; address 0x00

CONST R2, #0 ; Initialize C to 0

LOOP

CMPI R1, #0 ; Compare B to 0

BRnz END ; if (B <= 0) Branch to the end

ADD R2, R2, R0 ; C = C + A

ADD R1, R1, #-1 ; B = B – 1

BRnzp LOOP ; Go back to the beginning of the loop

END

Directives to indicate this code
starts at address 0 in memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 ASM Files

❖ LC4 Assembly Files are text files that contain a lot of
conveniences for LC4 programmers

▪ Instructions written as text (not as 16-bit patterns)

▪ Comments

▪ Initial values of some memory locations

▪ Labels to refer to addresses and values

▪ Directives

▪ Pseudo Instructions

❖ ASM files are not directly run on the LC4 processor, this
file needs to be processed into something machine-
readable

12

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Text Files

❖ .asm files and source code files for most languages are
text files:

▪ They can only contain ascii (or sometimes Unicode) characters.

▪ Are not directly executed by the computer

❖ Text files are different from .docx and .pdf files

▪ You cannot write text files in Microsoft Word

❖ Text files are created and edited by a text editor

▪ Vim, Emacs, Notepad, Notepad++, Nano, Sublime, Atom, etc.

13

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

ASM -> OBJ Process

❖ ASM Files need to be
processed by an assembler
to become machine code

❖ Machine code can be
executed directly by the
computer hardware.
(or a simulator in our case)

❖ Demo: multiply.obj vs
multiply.asm

14

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

PennSim

❖ A Java program written to:

▪ Convert LC4 Assembly to machine code

▪ Simulate the operations of LC4 ISA

▪ Provide debugging tools for LC4 ISA

❖ PennSim Demo

▪ (See the lecture recording)

15

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

PennSim Commands Pt. 1

❖ PennSim has a command line at the top that you can type
commands into
▪ as <outfilename> <infilename>

• Assembles a file from an assembly file into an object file .asm -> .obj

▪ ld <filename>

• Load an object file into memory

▪ set <register> <value>

• Loads a specific value into a register, works for special registers too
(PC and PSR)

▪ help <command>

• Gives some helpful information on the specified command

▪ reset

• Resets the state of the simulator – clears memory and registers

16

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

PennSim Commands Pt. 2

▪ clear

• Clears the output window

▪ break <set | clear> label

• Set or clear a break point at the specific label

▪ step

• Simulate the execution of the next instruction

▪ continue

• Continue the simulation until a breakpoint or fatal error is
encountered

▪ script <filename>

• You can put a sequence of commands in a text file and then run them
all at once using this command. Convenient and required for HW04.

17

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Lecture Outline

❖ ASM Files, Object Files, PennSim Demo

❖ LC4 Program Design (if/while/for)

❖ LC4 Memory

18

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4
instructions

❖ How would we implement
if (R0 >= 3)

R1 = R0;

19

START

CMPI R0, #3

BRn AFTER_IF

ADD R1, R0, #0

AFTER_IF

; ...

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4
instructions

❖ How would we implement
if (R0 != R2) {

R1 = R2;

} else {

R1 = 0;

}

20

START

CMP R0, R2

BRz ELSE

ADD R1, R2, #0

JMP AFTER

ELSE CONST R1, #0

AFTER

; ...

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4
instructions

❖ How would we implement
while (R0 != 2) {

// ...

}

21

START_LOOP

CMPI R0, #2

BRz AFTER_LOOP

; ...

JMP START_LOOP

AFTER_LOOP

; ...

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4
instructions

❖ How would we implement
for (R0 = 0; R0 < R6; R0++) {

// ...

}

22

CONST R0, #0

START_LOOP

CMP R0, R6

BRzp AFTER_LOOP

; ...

ADD R0, R0, #1

JMP START_LOOP

AFTER_LOOP

; ...

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Note On Labels

❖ When you are writing LC4 assembly, the labels you use
must be unique.

▪ If you use the same label more than once, the assembler will not
know which location you are referring to with JMP <LABEL>

❖ To avoid name conflicts, it is common to number the
labels or give more specific names.

❖ Instead of just using LOOP

▪ LOOP_1

▪ LOOP_2

▪ SUM_NUM_LOOP

▪ etc.

23

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Assembly Programming Strategy

❖ One approach

▪ Start by writing a pseudo code program

• Try to keep code “simple”

– don’t overuse variables, avoid recursion, etc

• Comment while you do this

▪ Translate each variable to a register

▪ Translate each line/piece of code to Assembly

▪ Test your assembly to make sure it works

24

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Lecture Outline

❖ ASM Files, Object Files, PennSim Demo

❖ LC4 Program Design (if/while/for)

❖ LC4 Memory

25

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Data Memory

❖ In LC4 we have 8 general
purpose registers.

❖ Most programs need more
than 8 variables

❖ User data is a portion of
memory where we can
store data that can’t
currently be in a register

26

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Memory vs Registers

❖ Registers

▪ Quick access storage

▪ Can easily directly modify values in registers

❖ Memory:

▪ Memory can take longer to read/write

▪ Read/write memory requires its own instructions

▪ Need to read data from memory into a register before we can
operate on it

▪ After data is updated, it needs to be stored back in memory for
memory to be updated.

27

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Pointers

❖ A Pointer is a variable (register in our case) that contains
the address of a memory location.

▪ We can use this pointer to read/write to that memory location

▪ We can modify the address stored in the pointer through
arithmetic to get a new address

❖ Dereferencing a pointer is when we take the address
stored in the pointer and access that memory location for
a read/write

❖ Pointers will be important for pretty much the rest of the
course, especially for C programing.

28

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR and STR

❖ LDR Rd, Rs, IMM6

▪ Action: Rd = memory[Rs + SEXT(IMM6)]

▪ Reads the data at address Rs + SEXT(IMM6) in memory and
loads it in Rd

❖ STR Rt, Rs, IMM6

▪ Action: memory[Rs + SEXT(IMM6)] = Rt

▪ Stores the value in Rt to the memory location at address
Rs + SEXT(IMM6)

29

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

30

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 --

R1 --

R2 --

R3 --

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

Set R0 to contain address 0x4020

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

31

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x0020

R1 --

R2 --

R3 --

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

Set R0 to contain address 0x4020

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

32

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4020

R1 --

R2 --

R3 --

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

Load the value at R0 + 0 into R1

R0 now “points to” the value stored at 0x4020

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

33

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4020

R1 0xEF24

R2 --

R3 --

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

R0 now “points to” the value stored at 0x4020

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

34

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 0xEF24

R2 --

R3 --

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

R0 is updated to “point to” the value stored at 0x4021

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

35

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 0xEF24

R2 0x9823

R3 --

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LDR Example

❖ What is we wanted to read a value stored at address
0x4020 in memory?

36

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 0xEF24

R2 0x9823

R3 0x401E

Memory

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

ADD R0, R0, #1

LDR R2, R0, #0

LDR R3, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

37

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 --

R1 #24

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Set R0 to contain address 0x4020

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

38

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x0020

R1 #24

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Set R0 to contain address 0x4020

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

39

x401E 0xDEAD

x401F 0xF00D

x4020 0xEF24

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4020

R1 #24

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

40

x401E 0xDEAD

x401F 0xF00D

x4020 0x0018

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4020

R1 #24

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

41

x401E 0xDEAD

x401F 0xF00D

x4020 0x0018

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 #24

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

42

x401E 0xDEAD

x401F 0xF00D

x4020 0x0018

x4021 0x9823

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 #38

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

43

x401E 0xDEAD

x401F 0xF00D

x4020 0x0018

x4021 0x0026

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 #38

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

44

x401E 0xDEAD

x401F 0xF00D

x4020 0x0018

x4021 0x0026

x4022 0x401E

x4023 0x328F

Registers Value

R0 0x4021

R1 #47

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

STR

❖ To store a value in memory, we follow similar steps

45

x401E 0xDEAD

x401F 0xF00D

x4020 0x0018

x4021 0x0026

x4022 0x002F

x4023 0x328F

Registers Value

R0 0x4021

R1 #47

R2 --

R3 --

CONST R0 x20

HICONST R0 x40

STR R1, R0, #0

ADD R0, R0, #1

ADD R1, R1, #14

STR R1, R0, #0

ADD R1, R1, #9

STR R1, R0, #1

Red arrow is the Program Counter
(PC) which points to the next
instruction to execute

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

46

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

Registers Value

R0 --

R1 --

R2 --

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

47

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

Registers Value

R0 --

R1 --

R2 --

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

48

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

Registers Value

R0 0x0020

R1 --

R2 --

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

49

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

Registers Value

R0 0x4020

R1 --

R2 --

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

50

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

Registers Value

R0 0x4020

R1 210

R2 --

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

51

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

Registers Value

R0 0x4020

R1 210

R2 110

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

CMOS Examples #1

52

❖ What value is stored at address 0x4020 by the end of the
program?

pollev.com/tqm

A. 110

B. 210

C. 240

D. 320

E. I’m not sure

Registers Value

R0 0x4020

R1 320

R2 110

CONST R0 x20

HICONST R0 x40

LDR R1, R0, #0

CONST R2, #110

ADD R1, R1, R2

x401F 240

x4020 210

x4021 107

x4022 380

x4023 333

Memory

Value was not written back to memory with STR!
Memory is not changed

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

More LC4 Directives

❖ These assembly directives provide information on how
various data/constants should be assembled
▪ .FALIGN

• Pad current address to the next multiple of 16. Useful since a
subroutine must start on an address that is a multiple of 16

▪ .FILL IMM16

• Set value at the current address to the specified 16 bit value

▪ .BLKW UIMM16

• Reserve UIMM16 words at the current address

▪ .CONST IMM16

• Associate IMM16 with the preceding label

▪ .UCONST UIMM16

• Associate UIMM16 with the preceding label

53

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

LC4 Pseudo Instructions

❖ Pseudo instructions look like normal instructions, but the
assembler translates them into real instructions.

▪ Pseudo instructions act as convenient aliases to make code more
readable for us

▪ RET

• Return from a subroutine

• Actual implementation: JMPR R7

▪ LEA Rd, <LABEL>

• Load effective address associated with a label into a register

• Actual implementation: a CONST, HICONST Pair

▪ LC Rd, <LABEL>

• Load a constant 16-bit value associate with a label via .CONST or
.UCONST into a register

• Actual implementation: a CONST, HICONST Pair
54

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Arrays

❖ Arrays are a common programming structure that consists
of a list of other data

▪ (we will work with arrays of integers)

❖ Arrays in LC4

▪ Since integers are 16-bits and registers are 16-bits, we can only fit
one integer into a register.

▪ We cannot “assign” a register to an array the same way we can do
so for integers

▪ Instead, store the array into data memory and have a register
with the address of the beginning of the array and a register with
the length of the array

55

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

sum_numbers.asm

❖ A sample program where we iterate over an array and get
the sum of all integers in that array

▪ Very useful to look at when working on HW04

❖ Demo

56

CIS 2400, Fall 2022L09: PennSim & LC4 MemoryUniversity of Pennsylvania

Strings & strlen.asm

❖ Strings can be thought of as similar to arrays, but as a
sequence of characters.

❖ Instead of having both the address to the start and the
length, we only have the address to the start

▪ The end of the string is marked by having a null-terminator
character (which is equal to 0) to mark the end of the string.

❖ strlen.asm

▪ Demo that shows how to calculate the length of a string in LC4

57

