
CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Input/Output & Subroutines
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

2

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Logistics

❖ HW05 Control Signals: This Friday 10/21 @ 11:59 pm

▪ Should have everything you need

▪ Practice in Recitations this week

▪ Normal programming assignment ☺

❖ Midterm Exam: Wednesday Next Week “in lecture”

▪ More details to be released soon

3

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Lecture Outline

❖ I/O Devices in LC4 Overview

❖ Interacting with I/O in LC4 Assembly

▪ Memory Mapped I/O

▪ Keyboard & ASCII Display

▪ Timer

▪ Video Display

❖ Subroutines in LC4

4

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Last Couple Lectures:

5

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 is Little

❖ “LC4” -> Little Computer 4

❖ What is LC4 missing when you think of a “typical” modern
computer?

▪ Graphics

▪ Keyboard & Mouse input

▪ Files

▪ Printing

▪ Multiple Programs running at once

▪ …

6

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

I/O

❖ Reading/writing anything “beyond” memory is called I/O

▪ We call the locations we read/write to I/O devices

❖ I/O devices include:

▪ Keyboard

▪ Mouse

▪ Files

▪ Graphics Displays

▪ Networks

▪ Etc.

7

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

I/O Devices & Controllers

❖ Most I/O devices are not purely digital, they have their
own hardware

▪ Electro-mechanical: e.g. keyboard, mouse, disk, motor

▪ Analog/digital: e.g. touchscreen, network interface, monitor,
speaker, mic

❖ … all have digital interfaces presented by an I/O Controller

▪ I/O Device (analog/digital mix) talks to controller

▪ CPU (digital) talks to controller

▪ Controller acts as a translator: digital (CPU) <-> analog (device)

8

I/O Controller I/O device

C
P

U

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

I/O Controller to CPU Interface

❖ I/O controller interface abstracts I/O device as “device
registers”

▪ Control/Status: may be one register or two

• Control: lets us toggle options on the device (we won’t focus on this)

• Status: lets us know if we are data is ready to be read/written

▪ Data: may be more than one register

• The data we are reading/writing

❖ Example: CPU reading data from input device

▪ CPU checks status register if input is available

▪ Reads input the data register

9

Control/Status

Data

Electronics I/O device

Similar steps for writing.
More details later!

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 I/O Devices

❖ LC4 has 4 I/O devices

▪ Keyboard (input)

▪ ASCII console (output)

▪ 128x124
16-bit RGB pixel
display (output)

▪ Timer (not really an
I/O device but looks
like one to software)

10

Video display

Keyboard/console

Timer

Demo: Breakout/Brick-breaker

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Lecture Outline

❖ I/O Devices in LC4 Overview

❖ Interacting with I/O in LC4 Assembly

▪ Memory Mapped I/O

▪ Keyboard & ASCII Display

▪ Timer

▪ Video Display

❖ Subroutines in LC4

11

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Where is I/O accessed in this computer?

12

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

How can we handle I/O in LC4?

❖ Two common options

❖ We could create new “I/O instructions” for the ISA

▪ Designate opcode(s) for I/O

▪ Register and operation encoded in instruction

❖ Memory-mapped I/O (Using LDR/STR for LC4)

▪ Assign a memory address to each device register

▪ Use conventional loads and stores

▪ Hardware intercepts loads/stores to these address

▪ No actual memory access performed

▪ LC4 (and most other platforms) do this

13

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 Device Memory

14

xC000

xFE00

video memory

User Code

User Data

OS Code

OS Data

+ Device
Memory

0x0000

0x1FFF

0x2000

0x7FFF

0x8000

0x9FFF

0xA000

0xFFFF device registers

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 ASCII I/O Device Registers

❖ Keyboard status register (KBSR): xFE00

▪ KBSR[15] is 1 if keyboard has new character

❖ Keyboard data register (KBDR): xFE02

▪ KBDR[7:0] is last character input on keyboard

❖ ASCII display status register (ADSR): xFE04

▪ ADSR[15] is 1 if console ready to display next character

❖ ASCII display data register (ADDR): xFE06

▪ ADDR[7:0] is written to console

15

xFE00 device registers

These are NOT
registers like
R0-R7, PC, and PSR

These are memory
locations from the
ASM perspective

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Memory Mapped I/O Demo

16

OS Code

OS Data +
Device

Memory

0x8000

0x9FFF

0xA000

0xFFFF

0xFE00

0xFE02

Keyboard
Electronics

Status register

Data register

A

Keyboard
Keyboard’s I/O Controller

LC4 Memory

1. User presses ‘A’ key on keyboard
2. Electronics box converts ‘A’ to ASCII: 0100 0001

• places this data into data register
3. Electronics box sets MSB of status register to ‘1’
4. Programmer checks status register

• by reading address 0xFE00
5. If MSB = 1, programmer reads data register

• by reading address 0xFE02
6. Electronics box reset status register after read

How to read xFE00 & xFE02?

status & device Regs
are mapped to data memory

LDR will do the trick!

XXXX XXXX 0100 0001

1XXX XXXX XXXX XXXX

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Aside: Constants in LC4

❖ Can declare signed/unsigned constants using
.CONST/.UCONST

▪ Recall, this is an assembly “directive”

▪ Mnemonic: .UCONST UIMM16

▪ Function: associate UIMM16 with preceding label

▪ Defines an unsigned 16-bit constant (.CONST is for signed) that
doesn’t show up in memory.

▪ Handy tool for us to declare an “alias” for a integer value to use
for the LC pseudo-instruction (LC details on next slide)

▪ Why not just use .FILL?

• .FILL directives show up in data memory

• .UCONST directives don’t
17

OS_KBSR_ADDR .UCONST xFE00 ; 'alias' for keyboard status reg

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Aside: Using Constants in LC4

❖ Set registers to a constant with the LC pseudo-instruction

❖ LC (Load Constant)

▪ Assembler pseudo-instruction similar to LEA

▪ Expands into CONST, HICONST pair

▪ Loads value at label rather than address of label

• LEA reads address of the label

18

OS_KBSR_ADDR .UCONST xFE00 ; 'alias' for keyboard status reg
LC R0, OS_KBSR_ADDR ; R0 = address of keyb status reg

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Example: Reading from Keyboard

19

When complete, R0 contains ASCII
character from keyboard

; code will read 1 character from the keyboard, store it in R0

OS_KBSR_ADDR .UCONST xFE00 ; ‘alias’ for keyboard status reg
OS_KBDR_ADDR .UCONST xFE02 ; ‘alias’ for keyboard data reg

.CODE
GETC ; a LABEL for now (perhaps subroutine someday)

LC R0, OS_KBSR_ADDR ; R0 = address of keyboard status reg
LDR R0, R0, #0 ; R0 = value of keyboard status reg
BRzp GETC ; if R0[15]=1, data is waiting!

; else, loop and check again...

;; reaching here, means data is waiting in keyboard data reg

LC R0, OS_KBDR_ADDR ; R0 = address of keyboard data reg
LDR R0, R0, #0 ; R0 = value of keyboard data reg

& updates NZP

MSB = 1, means value is negative

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

CMOS Examples #1

20

❖ What instructions do we need to change to PUTC (print a
character) from GETC (read a character)? (Ignore changes to
inputs, e.g. registers/labels/constants used)

pollev.com/tqm

A. Line 4 (last LDR)

B. Line 2 (BRzp)

C. Both

D. Neither

E. I’m not sure

; code will read 1 character from the
; keyboard, store it in R0. What if
; we wanted to change it to write the
; character in R0 to ASCII display

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.CODE
GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC
LC R0, OS_KBDR_ADDR
LDR R0, R0, #0

0
1
2
3
4

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Example: Print character to Screen

21

; reads 1 character from the keyboard, prints it to ASCII display

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02
OS_ADSR_ADDR .UCONST xFE04
OS_ADDR_ADDR .UCONST xFE06

.CODE
GETC

LC R0, OS_KBSR_ADDR ;; loop while KBSR[15]==0
LDR R0, R0, #0
BRzp GETC
LC R0, OS_KBDR_ADDR
LDR R0, R0, #0 ;; read data from keyboard

PUTC
LC R1, OS_ADSR_ADDR ;; loop while ADSR[15]==0
LDR R1, R1, #0
BRzp PUTC
LC R1, OS_ADDR_ADDR
STR R0, R1, #0 ;; write R0 to ASCII display

Get character

from keyboard

Aliases for keyboard status & data regs

Aliases for ASCII display status & data regs

Print character

to ASCII display

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 Device Register: Timer

❖ TIMER:
▪ Timer interval register (TIR): xFE0A

• Set desired time in TIR (in msec)

▪ Timer status register (TSR): xFE08

• TSR[15] is 1 if timer has “gone off”, sets itself to 0 after read

❖ Works like an egg timer, set desired time in TIR,
Then poll/check TSR to see if time has expired

22

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Aside: Displays & Pixels

❖ Pixel: Smallest addressable element of most images and
video display devices

▪ Usually a pixel will
represent a single square
on a display.

▪ The whole display is made
of these small pixels

❖ Each Pixel’s color is created by some
amount of Red, Green and Blue (RGB)

❖ Short video on how RGB works for those interested:
First 2.5 min of "This Is Not Yellow" By Vsauce on YouTube

23

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 Device Register: Video

❖ VIDEO:
▪ Video display control register (VDCR): xFE0C

• Can be used to clear screen or swap video buffers

▪ Video display’s many data registers: xC000-xFDFF

• There are 15,872 pixels, each pixel needs its own register containing
the color for that pixel

24

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Video Memory

25

device registers

xC000

xFE00

video memory

User Code

User Data

OS Code

OS Data

+ Device
Memory

0x0000

0x1FFF

0x2000

0x7FFF

0x8000

0x9FFF

0xA000

0xFFFF

0xC000

rows=

x3E00

0x3E00 converts to
=15,872

LC4’s video display has:
128 cols x124 rows
=15,872 pixels

One memory location
per pixel on video display

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

LC4 Pixel-Based Video Display

❖ LC4 has a 128x124 16b RGB (32K color) pixel display

▪ 128 columns (0-127) and 124 rows (0-123)

▪ Entire display is memory-mapped

• One memory location per pixel

• Memory region xC000-xFDFF

• xC000-xC07F is first row,
xC080-xC0FF is second row, etc.

❖ Write to memory location to set pixel color

▪ Your job: compute location of pixel

▪ Then STR color to that address

26

B
15 14 0

GR

Display

xC000

5910 4

xC080

xC100

xC180

xC200

xC280

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Addressing a Pixel

❖ Need to calculate the address that corresponds to a pixel

❖ Logically display is 2D, but 1D in memory

▪ Row-major order (vmem[y][x])
vmem[y][x] – pixel on row y, col x

▪ Pixel at vmem[2][5] stored at
xC000 + (2 * 128) + 5

▪ In general vmem[y][x] stored at
xC000 + (y * 128) + x

▪ Note indexing from upper
left corner of the display (0, 0)

27

.ADDR xC000

OS_VIDEO_MEM .BLKW x3E00 ; why 3E00?

OS_VIDEO_NUM_COLS .UCONST #128

OS_VIDEO_NUM_ROWS .UCONST #124

X
[0:127]

Y
[0:123]

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

CMOS Examples #1

28

❖ If I drew a pixel at offset 261 (vmem[2][5]) into
OS_VIDEO_MEM and wanted to draw the pixel above it on
the display, which offset should I write to?

pollev.com/tqm

A. 259

B. 261

C. 133

D. 389

E. I’m not sure

X
[0:127]

Y
[0:123]

.ADDR xC000

OS_VIDEO_MEM .BLKW x3E00

OS_VIDEO_NUM_COLS .UCONST #128

OS_VIDEO_NUM_ROWS .UCONST #124

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

CMOS Examples #1

29

❖ If I drew a pixel at offset 261 (vmem[2][5]) into
OS_VIDEO_MEM and wanted to draw the pixel above it on
the display, which offset should I write to?

pollev.com/tqm

A. 259

B. 261

C. 133

D. 389

E. I’m not sure

X
[0:127]

Y
[0:123]

.ADDR xC000

OS_VIDEO_MEM .BLKW x3E00

OS_VIDEO_NUM_COLS .UCONST #128

OS_VIDEO_NUM_ROWS .UCONST #124

Pixel above: vmem[1][5]
offset = (1 * 128) + 5

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Demo: Drawing a Horizontal Line

❖ draw_horizontal_line.asm on course website

30

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Lecture Outline

❖ I/O Devices in LC4 Overview

❖ Interacting with I/O in LC4 Assembly

▪ Memory Mapped I/O

▪ Keyboard & ASCII Display

▪ Timer

▪ Video Display

❖ Subroutines in LC4

31

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

“Functions” in LC4

❖ To avoid repeating code, we group code together in one
cohesive and invocable (e.g. callable) unit.

▪ Typically this is in the form of a function.

❖ In LC4, we do this with subroutines

▪ Subroutines don’t necessarily follow the same ideas of variable
scope, parameters, return values, etc.

▪ In LC4, a subroutine is just a callable sequence of instructions.

▪ We use JSR, JSRR and RET instructions for handling subroutines

32

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

JSR, JSRR and RET

❖ JSR IMM11

▪ Action: R7 = PC + 1,
PC = (PC & 0x8000) | (IMM11 << 4)

▪ “Jump Subroutine”

▪ Stores PC + 1 in R7 before jumping so that after the
subroutine, we can return to right after JSR

❖ JSRR Rs

▪ Action: R7 = PC + 1, PC = Rs

▪ “Jump Subroutine Register”

❖ RET

▪ Return from a subroutine

▪ Actual implementation: JMPR R7

33

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Creating a Subroutine:

❖ Consider the multiply program from 2 lectures ago:

❖ How do we make this a
subroutine?

▪ Add a RET pseudo-instruction
wherever we are “done”
with the subroutine

▪ Add the .FALIGN directive
before the first label/instruction

• .FALIGN makes sure the code
starts at an address that is
a multiple of 16.

• This is needed since JSR stores
a IMM11 that is then shifted
to the left by 4

• (x << 4) == x * 16 34

;; Multiplication program

;; C = A*B

;; R0 = A, R1 = B, R2 = C

.CODE

.FALIGN

MULT

CONST R2, #0

LOOP

CMPI R1, #0

BRnz END

ADD R2, R2, R0

ADD R1, R1, #-1

BRnzp LOOP

END

RET

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Calling a Subroutine:

❖ If we wanted to call a subroutine from other LC4 Code

❖ NOTE: the same registers R0-R7 are used inside and
outside a subroutine. (These are NOT parameters)

▪ We can’t always be sure that a certain register will not be
changed

▪ If we wanted to keep any values in registers the same after the
subroutine, we must store them in memory
(we’ll return to this much later in the semester) 35

.CODE

.ADDR 0x0000

CONST R0, #5 ; Initialize input "parameters"

CONST R1, #6

JSR MULT ; call the subroutine

; resume execution here after MULT returns

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

Backing Up the Register File

❖ The register file will be used inside a subroutine

▪ It will likely overwrite everything in the REGFILE

▪ BEFORE you call a subroutine, save relevant content of REGFILE

▪ LDR and STR’s “OFFSET” comes in handy here:

36

TEMPS .UCONST x4200 ; address of temporary storage

LC R7, TEMPS ; load address into R7

STR R0, R7, #0 ; store R0 in TEMPS[0]

STR R1, R7, #1 ; store R1 in TEMPS[1]

STR R2, R7, #2 ; store R2 in TEMPS[2]

…

STR R6, R7, #6 ; store R6 in TEMPS[6]

JSR MULT ; call the subroutine

LC R7, TEMPS ; load address into R7

LDR R0, R7, #0 ; restore R0 from TEMPS[0]

LDR R1, R7, #1 ; restore R1 from TEMPS[1]

LDR R2, R7, #2 ; restore R2 from TEMPS[2]

Save content of REGFILE
before you call
subroutine

Restore content of REGFILE

AFTER you return

CIS 2400, Fall 2022L12: Input/Output & SubroutinesUniversity of Pennsylvania

I/O Subroutines?

❖ How can we make I/O easier?

▪ Can we make subroutines to handle I/O? (More next lecture)

37

; subroutine to read 1 character
; from the keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.CODE

.FALIGN
GETC

LC R0, OS_KBSR_ADDR ; load status register addr
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR ; load Data register addr
LDR R0, R0, #0

SUB_

RET

