
CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Subroutines & OS TRAPs
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

2

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Logistics

❖ HW05 Control Signals: This Friday 10/21 @ 11:59 pm

▪ Should have everything you need

▪ Practice in Recitations this week

▪ Normal programming assignment ☺

❖ Midterm Exam: Wednesday Next Week “in lecture”

▪ Details released on the course website

3

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Lecture Outline

❖ I/O Devices in LC4 Wrap-up

❖ Calling “functions” in LC4

❖ Traps & The OS

4

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

I/O Controller to CPU Interface

❖ I/O controller interface abstracts I/O device as “device
registers”

▪ Control/Status: may be one register or two

• Control: lets us toggle options on the device (we won’t focus on this)

• Status: lets us know if we are data is ready to be read/written

▪ Data: may be more than one register

• The data we are reading/writing

❖ Example: CPU reading data from input device

▪ CPU checks status register if input is available

▪ Reads input the data register

5

Control/Status

Data

Electronics I/O device

Similar steps for writing.
More details later!

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

LC4 I/O Devices

❖ LC4 has 4 I/O devices

▪ Keyboard (input)

▪ ASCII console (output)

▪ 128x124
16-bit RGB pixel
display (output)

▪ Timer (not really an
I/O device but looks
like one to software)

6

Video display

Keyboard/console

Timer

Demo: Breakout/Brick-breaker

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

I/O "Memory"

7

device registers

xC000

xFE00

video memory

User Code

User Data

OS Code

OS Data

+ Device
Memory

0x0000

0x1FFF

0x2000

0x7FFF

0x8000

0x9FFF

0xA000

0xFFFF

0xC000

rows=

x3E00

0x3E00 converts to
=15,872

LC4’s video display has:
128 cols x124 rows
=15,872 pixels

One memory location
per pixel on video display

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Example: Print character to Screen

8

; reads 1 character from the keyboard, prints it to ASCII display

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02
OS_ADSR_ADDR .UCONST xFE04
OS_ADDR_ADDR .UCONST xFE06

.CODE
GETC

LC R0, OS_KBSR_ADDR ;; loop while KBSR[15]==0
LDR R0, R0, #0
BRzp GETC
LC R0, OS_KBDR_ADDR
LDR R0, R0, #0 ;; read data from keyboard

PUTC
LC R1, OS_ADSR_ADDR ;; loop while ADSR[15]==0
LDR R1, R1, #0
BRzp PUTC
LC R1, OS_ADDR_ADDR
STR R0, R1, #0 ;; write R0 to ASCII display

Get character

from keyboard

Aliases for keyboard status & data regs

Aliases for ASCII display status & data regs

Print character

to ASCII display

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Addressing a Pixel

❖ Need to calculate the address that corresponds to a pixel

❖ Logically display is 2D, but 1D in memory

▪ Row-major order (vmem[y][x])
vmem[y][x] – pixel on row y, col x

▪ Pixel at vmem[2][5] stored at
xC000 + (2 * 128) + 5

▪ In general vmem[y][x] stored at
xC000 + (y * 128) + x

▪ Note indexing from upper
left corner of the display (0, 0)

9

.ADDR xC000

OS_VIDEO_MEM .BLKW x3E00 ; why 3E00?

OS_VIDEO_NUM_COLS .UCONST #128

OS_VIDEO_NUM_ROWS .UCONST #124

X
[0:127]

Y
[0:123]

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Demo: Drawing a Horizontal Line

❖ draw_horizontal_line.asm on course website

10

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Lecture Outline

❖ I/O Devices in LC4 Wrap-up

❖ Calling “functions” in LC4

❖ Traps & The OS

11

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

“Functions” in LC4

❖ To avoid repeating code, we group code together in one
cohesive and invocable (e.g. callable) unit.

▪ Typically this is in the form of a function.

❖ In LC4, we do this with subroutines

▪ Subroutines don’t necessarily follow the same ideas of variable
scope, parameters, return values, etc.

▪ In LC4, a subroutine is just a callable sequence of instructions.

▪ We use JSR, JSRR and RET instructions for handling subroutines

12

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

JSR, JSRR and RET

❖ JSR IMM11

▪ Action: R7 = PC + 1,
PC = (PC & 0x8000) | (IMM11 << 4)

▪ “Jump Subroutine”

▪ Stores PC + 1 in R7 before jumping so that after the
subroutine, we can return to right after JSR

❖ JSRR Rs

▪ Action: R7 = PC + 1, PC = Rs

▪ “Jump Subroutine Register”

❖ RET

▪ Return from a subroutine

▪ Is a Pseudo Instruction

▪ Actual implementation: JMPR R7
13

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Creating a Subroutine:

❖ Consider the multiply program from 3 lectures ago:

❖ How do we make this a
subroutine?

▪ Add a RET pseudo-instruction
wherever we are “done”
with the subroutine

▪ Add the .FALIGN directive
before the first label/instruction

• .FALIGN makes sure the code
starts at an address that is
a multiple of 16.

• This is needed since JSR stores
a IMM11 that is then shifted
to the left by 4

• (x << 4) == x * 16 14

;; Multiplication program

;; C = A*B

;; R0 = A, R1 = B, R2 = C

.CODE

.FALIGN

MULT

CONST R2, #0

LOOP

CMPI R1, #0

BRnz END

ADD R2, R2, R0

ADD R1, R1, #-1

BRnzp LOOP

END

RET

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Calling a Subroutine:

❖ If we wanted to call a subroutine from other LC4 Code

15

.CODE

.ADDR 0x0000

CONST R0, #5 ; Initialize input "parameters"

CONST R1, #6

JSR MULT ; call the subroutine

; resume execution here after MULT returns

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Subroutine Walkthrough

❖ When a JSR is executed:

▪ Stores PC + 1 in R7

▪ PC jumps to the address of the start
of the subroutine (which must be a
multiple of 16).

❖ During Subroutine:

▪ R0-R7 are possibly modified

▪ R7 should have the same value at the
end of the subroutine. It contains the
address needed to return to Caller

❖ After Subroutine is complete:

▪ Returns using RET (which is JMPR R7)

▪ R7 should contain the return address
16

USER CODE

x0000

…

x0010 CONST R0, #2

x0011 CONST R1, #3

x0012 JSR MULT

x0013 CMP R2, R5

… …

MULT CONST R2, #0

x0031 CMPI R1, #0

x0032 BRnz END

… …

x0036 RET (JMPR R7)

PC=x0030
R7=x0013

PC = R7=x0013

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Subroutine Data Passing

❖ "Parameters"

▪ Similar to HW04, we can designate some registers to contain
“inputs” that are set by the caller. These values can be:

• Some 16-bit value

• Address to a memory location containing values (e.g. strings or arrays)

❖ "Return Values"

▪ Subroutines will also designate a register to store their “result” in,
assuming that there is a result to return

❖ NOTE: the same registers R0-R7 are used inside and
outside a subroutine.

▪ We can’t always be sure that a certain register will not be
changed

17

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Backing Up the Register File

❖ The register file will be used inside a subroutine

▪ It will likely overwrite everything in the REGFILE

▪ BEFORE you call a subroutine, save relevant content of REGFILE

▪ LDR and STR’s “OFFSET” comes in handy here:

18

TEMPS .UCONST x4200 ; address of temporary storage

LC R7, TEMPS ; load address into R7

STR R0, R7, #0 ; store R0 in TEMPS[0]

STR R1, R7, #1 ; store R1 in TEMPS[1]

STR R2, R7, #2 ; store R2 in TEMPS[2]

…

STR R6, R7, #6 ; store R6 in TEMPS[6]

JSR MULT ; call the subroutine

LC R7, TEMPS ; load address into R7

LDR R0, R7, #0 ; restore R0 from TEMPS[0]

LDR R1, R7, #1 ; restore R1 from TEMPS[1]

LDR R2, R7, #2 ; restore R2 from TEMPS[2]

Save content of REGFILE
before you call
subroutine

Restore content of REGFILE

AFTER you return

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

I/O Subroutines?

❖ How can we make I/O easier?

▪ Can we make subroutines to handle I/O?

19

; subroutine to read 1 character
; from the keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.CODE

.FALIGN
GETC

LC R0, OS_KBSR_ADDR ; load status register addr
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR ; load Data register addr
LDR R0, R0, #0

SUB_

RET

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Lecture Outline

❖ I/O Devices in LC4 Wrap-up

❖ Calling “functions” in LC4

❖ Traps & The OS

20

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Operating Systems

❖ An operating system is software the directly interacts with
hardware. The OS is trusted to do this for a few reasons:

▪ To prevent users from breaking things

▪ To abstract away messy details about hardware devices into a
standardized and more portable/convenient interface

• Think of how there are many types of keyboards, computer mice,
network cards, hard drive types etc. OS abstracts away these details

• Users typically don’t want to handle the status and data registers
directly. Users can call an “OS function” to do things for them.

▪ Manages (allocates, schedules, protects) hardware resources

• Modern computers will have more than one program running, how
are resources (files, screen display, etc) shared across these
programs?

21

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Recall the full LC-4 Memory Map

• We have 2 Program Memories

• And 2 Data Memories

User Region
• Programs run by users (e.g.: factorial program)

• Processes run in user mode have PSR[15]=0

• NOT allowed to access OS locations in memory

Operating System Region
• Programs run by OS (e.g.: I/O device programs)

• Processes run in OS mode have PSR[15]=1

• Allowed to access OS & User locations in memory

Processor Status Register
• Contains the privilege bit

• Contains the three NZP bits

User Code

User Data

OS Code

OS Data
+ Device Memory

0x0000

0x1FFF

0x2000

0x7FFF

0x8000

0x9FFF

0xA000

0xFFFF

Program
Memory

Data
Memory

Program
Memory

Data
Memory

16-bit addresses

16-bit contents

22

15 2 1 0

1 N Z P

LC4 Memory Map

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

GETC in User Issues

23

; subroutine to read 1 character
; from the keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.CODE

.ADDR x0000
GETC

LC R0, OS_KBSR_ADDR ; load status register addr
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR ; load Data register addr
LDR R0, R0, #0

• There is a slight problem with this code

• Since it will be loaded into program memory: x0000

• the LDR statements will fail!

• Programs running in USER program memory:

• have PSR[15]=0

• they cannot access OS data memory
(where Device registers are)

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

GETC in OS

24

; subroutine to read
; 1 character from the
; keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.OS

.CODE

.ADDR x8000
GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0

BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0

SUB_

RET

• These 3 red bolded directives:

• .OS .CODE .ADDR x8000

• instruct the assembler, to tell the loader, to load this
program into OS program memory

• When the LC4 executes this code, PSR[15] must be 1

• since the PSR[15]=1,

• this program will be allowed to LDR from OS data
memory

• We have one small problem…

• what if we turn this into a subroutine

• how can we call this subroutine from user space?

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Calling GETC in User Memory

❖ Currently, we can’t easily run GETC

▪ When a program is running in User Program Memory, PSR[15] = 0
We can’t LDR/STR to device memory

▪ If we put GETC subroutine in OS program memory, then PSR[15]
must already be 1 to execute it

❖ How do we call the OS code from a USER program?
(PSR[15]=0)…

▪ JSR and JMP won’t allow it!

▪ Neither change the privilege of the program

▪ LC4 will kill any program with PSR[15]=0 that attempts to jump
into OS memory.

❖ Answer: TRAP instruction

25

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

TRAP vs JSR

❖ The TRAP instruction is very similar to a JSR:

▪ It saves PC+1 into R7

▪ It updates the PC to an offset you specify

▪ But it also elevates the privilege level of the CPU from 0 to 1

❖ The purpose of the TRAP instruction:

▪ Allow a program running in USER Program Memory,
to call a subroutine installed in OS Program Memory

❖ Subroutines in OS code are called TRAPS

26

Mnemonic Semantics Encoding

TRAP UIMM8 R7 = PC+1,
PC = (x8000 | UIMM8),
PSR[15] = 1

1111----UUUUUUUU

JSR IMM11 R7 = PC+1,
PC = (PC&x8000) | (IMM11<<4)

01101IIIIIIIIIII

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

RTI vs RET

❖ The RTI instruction is very similar to a RET:

▪ It restores the PC back to the value saved in R7 (just like RET)

▪ BUT, it also lowers the privilege level of the CPU from 1 to 0

❖ The purpose of the RTI instruction:

▪ Allow a subroutine running in the OS program memory
to return to a caller in the USER program memory

27

Mnemonic Semantics Encoding

RTI PC = R7,
PSR[15] = 0

1000------------

RET JMPR R7, which simply sets: PC =
R7

11000--111------

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Installing GETC into the OS

28

; User Program Memory
.CODE
.ADDR x0000

; doing some fun stuff, like computing factorials!

; now, let’s get a character from the keyboard!

TRAP x00 ; saves R7=PC+1, sets PC = x8000 | x00,
; and PSR[15]=1

; upon return, do something with R0

; OS Program Memory
.OS
.CODE
.ADDR x8000
SUB_GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0 ; loads char from keyboard into R0
RTI ; sets PC = R7 and restores PSR[15]=0

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

The Limits of the TRAP Instruction

❖ The TRAP instruction is limited.

▪ Can’t jump to anywhere in OS program memory, only the first 256
memory locations

▪ We could expand the immediate to be more than 8 bits,
why this limitation?

• To control what portion of OS memory the USER can jump to

▪ How it limits the user:

• In the semantics: PC = (x8000 | UIMM8)

• What is the largest 8-bit unsigned number you can make? xFF = 255

• e.g.: PC = x8000 | xFF = x80FF
29

Mnemonic Semantics Encoding

TRAP UIMM8 R7 = PC+1,
PC = (x8000 | UIMM8),
PSR[15] = 1

1111----UUUUUUUU

JSR IMM11 R7 = PC+1,
PC = (PC&x8000) | (IMM11<<4)

01101IIIIIIIIIII

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Installing GETC into the OS Properly

30

; User Program Memory
.CODE
.ADDR x0000

; doing some fun stuff, like computing factorials!

; now, let’s get a character from the keyboard!

TRAP x00

; OS Program Memory
.OS
.CODE
.ADDR x8000
SUB_GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0
RTI

We shouldn’t install our “TRAPS” starting at x8000

Why not?
- For one, user’s might jump into the middle of our trap!

Imagine: TRAP x01? We’d jump right into LDR R0,…

Another reason?
- Since traps take up multiple locations that can be

jumped to, longer traps restrict how many traps we
can have in the OS

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Controlling User Access to the OS

❖ Since TRAP can only jump to the first 256 locations in OS
program memory…

▪ Make those locations all JMP to the beginning of a TRAP routine

▪ Allows us to have complete control over how users enter the OS.
Users can’t JUMP into the middle of an OS TRAP routine

▪ Allows us to put OS TRAPs deeper into OS Memory

31

.OS

.CODE

.ADDR x8000

JMP TRAP_GETC ; x00

JMP TRAP_PUTC ; x01

JMP TRAP_DRAW_H_LINE ; x02

…

JMP BAD_TRAP ; xFF

The first 256 lines of OS Program Memory
called the: TRAP VECTOR TABLE

We publish this list to the user
user can call the TRAPS by number:
e.g.: TRAP x01, will call TRAP: PUTC

the table listing helps them map # to TRAP

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Installing TRAPs into the OS Properly

32

; OS Program Memory
.OS
.CODE
.ADDR x8300
TRAP_GETC ;; this is TRAP x00

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0
RTI

TRAP_PUTC ;; this is TRAP x01
LC R1, OS_ADSR_ADDR
LDR R1, R1, #0
BRzp TRAP_PUTC
LC R1, OS_ADDR_ADDR
STR R0, R1, #0
RTI

Start at a memory location in OS program
memory, but AFTER the TRAP Vector Table

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Trap Execution Walkthrough

❖ When a TRAP is called:

▪ CPU sets PSR[15]=1,

▪ stores PC+1 in R7

▪ and Jumps to entry in the
TRAP Table

▪ This address is a JMP
instruction which redirects
to the TRAP routine

33

USER CODE
PSR[15]=0

x0000

…

x0010 STR R6, R5, #0

x0011 TRAP x24

x0012 CONST R6,…

OS CODE
PSR[15]=1

x8000

x8024 JMP
TRAP_GETC

x0011

x0012

x8200 OS_STARTS

x8300 TRAP_GETC
LC R0,

OS_KBSR_ADDR...

…

RTI

PSR[15]=1
PC=x8024
R7=x0012

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

Trap Execution Walkthrough

❖ After the TRAP routine is
complete:

▪ it returns by using RTI,

▪ which sets the PC to R7

▪ which should contain the
return address

▪ and sets PSR[15] = 0

34

USER CODE
PSR[15]=0

x0000

…

x0010 STR R6, R5, #0

x0011 TRAP x24

x0012 CONST R6,…

OS CODE
PSR[15]=1

x8000

x8024 JMP
TRAP_GETC

x0011

x0012

x8200 OS_STARTS

x8300 TRAP_GETC
LC R0,

OS_KBSR_ADDR...

…

RTI

PSR[15]=1
PC=x8024
R7=x0012

PSR[15]=0
PC=R7=(x0012)

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

TRAP vs SUBROUTINE

❖ TRAPs behave very similar to subroutines

▪ Data is passed in the same way

▪ Registers may still be overwritten by a TRAP or Subroutine

▪ TRAPs can access user data to read string/array inputs

▪ R7 contains the return address to go back to the caller

❖ Key Differences:

▪ Different instructions to enter/leave TRAPs and Subroutines

▪ TRAPs exist in the OS and require OS privilege

▪ Can’t call a TRAP from within another TRAP

35

CIS 2400, Fall 2022L13: Subroutines & TRAPsUniversity of Pennsylvania

OS in the Real World:

❖ What we just created highlights the role of the OS

▪ Protecting & Abstracting away details of hardware

▪ Creating a system of handling I/O calls

❖ Real OSs handle a lot more than I/O & System Calls

▪ Sharing resources (CPU, memory, files) across multiple programs

▪ Interrupts for handing I/O instead of “polling” (manually checking
if I/O devices are ready)

▪ Still follow similar practices with TRAP Vector Table

▪ (Take 3800 or 5480 for more!)

❖ The OS in LC4 pretty much only handles I/O

▪ There is only one program running in LC4 at a time, so these other
features don’t make sense to implement.

36

