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Logistics

❖ HW05 Control Signals: This Friday 10/21 @ 11:59 pm

▪ Should have everything you need

▪ Practice in Recitations this week

▪ Normal programming assignment ☺

❖ Midterm Exam: Wednesday Next Week “in lecture”

▪ Details released on the course website
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Lecture Outline

❖ I/O Devices in LC4 Wrap-up

❖ Calling “functions” in LC4

❖ Traps & The OS
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I/O Controller to CPU Interface

❖ I/O controller interface abstracts I/O device as “device 
registers”

▪ Control/Status: may be one register or two

• Control: lets us toggle options on the device (we won’t focus on this)

• Status: lets us know if we are data is ready to be read/written

▪ Data: may be more than one register

• The data we are reading/writing

❖ Example: CPU reading data from input device

▪ CPU checks status register if input is available

▪ Reads input the data register

5

Control/Status

Data

Electronics I/O device

Similar steps for writing.
More details later!
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LC4 I/O Devices

❖ LC4 has 4 I/O devices

▪ Keyboard (input)

▪ ASCII console (output)

▪ 128x124 
16-bit RGB pixel 
display (output)

▪ Timer (not really an 
I/O device but looks 
like one to software)

6

Video display

Keyboard/console

Timer

Demo: Breakout/Brick-breaker
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I/O "Memory"

7

device registers

xC000

xFE00

video memory

User Code

User Data

OS Code

OS Data

+ Device 
Memory

0x0000

0x1FFF

0x2000

0x7FFF

0x8000

0x9FFF

0xA000

0xFFFF

0xC000

rows=

x3E00

0x3E00 converts to
=15,872

LC4’s video display has:
128 cols x124 rows
=15,872 pixels

One memory location
per pixel on video display
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Example: Print character to Screen

8

; reads 1 character from the keyboard, prints it to ASCII display

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02
OS_ADSR_ADDR .UCONST xFE04
OS_ADDR_ADDR .UCONST xFE06

.CODE
GETC

LC R0, OS_KBSR_ADDR ;; loop while KBSR[15]==0
LDR R0, R0, #0
BRzp GETC
LC R0, OS_KBDR_ADDR
LDR R0, R0, #0 ;; read data from keyboard

PUTC
LC R1, OS_ADSR_ADDR ;; loop while ADSR[15]==0
LDR R1, R1, #0
BRzp PUTC
LC R1, OS_ADDR_ADDR 
STR R0, R1, #0      ;; write R0 to ASCII display

Get character

from keyboard

Aliases for keyboard status & data regs

Aliases for ASCII display status & data regs

Print character

to ASCII display
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Addressing a Pixel

❖ Need to calculate the address that corresponds to a pixel

❖ Logically display is 2D, but 1D in memory

▪ Row-major order (vmem[y][x])
vmem[y][x] – pixel on row y, col x

▪ Pixel at vmem[2][5] stored at
xC000 + (2 * 128) + 5

▪ In general vmem[y][x] stored at
xC000 + (y * 128) + x

▪ Note indexing from upper
left corner of the display (0, 0)       

9

.ADDR xC000

OS_VIDEO_MEM      .BLKW x3E00 ; why 3E00? 

OS_VIDEO_NUM_COLS .UCONST #128

OS_VIDEO_NUM_ROWS .UCONST #124

X 
[0:127]

Y 
[0:123]
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Demo: Drawing a Horizontal Line

❖ draw_horizontal_line.asm on course website
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Lecture Outline

❖ I/O Devices in LC4 Wrap-up

❖ Calling “functions” in LC4

❖ Traps & The OS
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“Functions” in LC4

❖ To avoid repeating code, we group code together in one 
cohesive and invocable (e.g. callable) unit.

▪ Typically this is in the form of a function.

❖ In LC4, we do this with subroutines

▪ Subroutines don’t necessarily follow the same ideas of variable 
scope, parameters, return values, etc.

▪ In LC4, a subroutine is just  a callable sequence of instructions.

▪ We use JSR, JSRR and RET instructions for handling subroutines

12
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JSR, JSRR and RET

❖ JSR IMM11

▪ Action: R7 = PC + 1,
PC = (PC & 0x8000) | (IMM11 << 4)

▪ “Jump Subroutine”

▪ Stores PC + 1 in R7 before jumping so that after the 
subroutine, we can return to right after JSR

❖ JSRR Rs

▪ Action: R7 = PC + 1, PC = Rs

▪ “Jump Subroutine Register”

❖ RET

▪ Return from a subroutine

▪ Is a Pseudo Instruction

▪ Actual implementation: JMPR R7
13
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Creating a Subroutine:

❖ Consider the multiply program from 3 lectures ago:

❖ How do we make this a
subroutine?

▪ Add a RET pseudo-instruction
wherever we are “done”
with the subroutine

▪ Add the .FALIGN directive
before the first label/instruction

• .FALIGN makes sure the code
starts at an address that is
a multiple of 16.

• This is needed since JSR stores
a IMM11 that is then shifted
to the left by 4

• (x << 4)  ==  x * 16 14

;; Multiplication program

;; C = A*B

;; R0 = A, R1 = B, R2 = C

.CODE

.FALIGN

MULT

CONST R2, #0

LOOP

CMPI R1, #0

BRnz END

ADD R2, R2, R0

ADD R1, R1, #-1

BRnzp LOOP

END

RET
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Calling a Subroutine:

❖ If we wanted to call a subroutine from other LC4 Code

15

.CODE

.ADDR 0x0000

CONST R0, #5 ; Initialize input "parameters"

CONST R1, #6

JSR MULT ; call the subroutine

; resume execution here after MULT returns
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Subroutine Walkthrough

❖ When a JSR is executed:

▪ Stores PC + 1 in R7 

▪ PC jumps to the address of the start
of the subroutine (which must be a
multiple of 16).

❖ During Subroutine:

▪ R0-R7 are possibly modified

▪ R7 should have the same value at the
end of the subroutine. It contains the
address needed to return to Caller

❖ After Subroutine is complete:

▪ Returns using RET (which is JMPR R7)

▪ R7 should contain the return address
16

USER CODE

x0000

…

x0010 CONST R0, #2

x0011 CONST R1, #3

x0012 JSR MULT

x0013 CMP R2, R5

… …

MULT CONST R2, #0

x0031 CMPI R1, #0

x0032 BRnz END

… …

x0036 RET (JMPR R7)

PC=x0030
R7=x0013

PC = R7=x0013
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Subroutine Data Passing

❖ "Parameters"

▪ Similar to HW04, we can designate some registers to contain 
“inputs” that are set by the caller. These values can be:

• Some 16-bit value

• Address to a memory location containing values (e.g. strings or arrays) 

❖ "Return Values"

▪ Subroutines will also designate a register to store their “result” in, 
assuming that there is a result to return

❖ NOTE: the same registers R0-R7 are used inside and 
outside a subroutine. 

▪ We can’t always be sure that a certain register will not be 
changed

17
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Backing Up the Register File

❖ The register file will be used inside a subroutine

▪ It will likely overwrite everything in the REGFILE

▪ BEFORE you call a subroutine, save relevant content of REGFILE

▪ LDR and STR’s “OFFSET” comes in handy here:

18

TEMPS .UCONST x4200 ; address of temporary storage

LC R7, TEMPS ; load address into R7

STR R0, R7, #0 ; store R0 in TEMPS[0]

STR R1, R7, #1 ; store R1 in TEMPS[1]

STR R2, R7, #2 ; store R2 in TEMPS[2]

…

STR R6, R7, #6 ; store R6 in TEMPS[6]

JSR MULT ; call the subroutine

LC R7, TEMPS ; load address into R7

LDR R0, R7, #0 ; restore R0 from TEMPS[0]

LDR R1, R7, #1 ; restore R1 from TEMPS[1]

LDR R2, R7, #2 ; restore R2 from TEMPS[2]

Save content of REGFILE
before you call 
subroutine

Restore content of REGFILE

AFTER you return
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I/O Subroutines?

❖ How can we make I/O easier?

▪ Can we make subroutines to handle I/O?

19

; subroutine to read 1 character
; from the keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.CODE

.FALIGN
GETC

LC R0, OS_KBSR_ADDR ; load status register addr
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR ; load Data register addr
LDR R0, R0, #0

SUB_

RET
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Lecture Outline

❖ I/O Devices in LC4 Wrap-up

❖ Calling “functions” in LC4

❖ Traps & The OS
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Operating Systems

❖ An operating system is software the directly interacts with 
hardware. The OS is trusted to do this for a few reasons:

▪ To prevent users from breaking things

▪ To abstract away messy details about hardware devices into a 
standardized and more portable/convenient interface

• Think of how there are many types of keyboards, computer mice, 
network cards, hard drive types etc. OS abstracts away these details

• Users typically don’t want to handle the status and data registers 
directly. Users can call an “OS function” to do things for them.

▪ Manages (allocates, schedules, protects) hardware resources

• Modern computers will have more than one program running, how 
are resources (files, screen display, etc) shared across these 
programs?

21
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Recall the full LC-4 Memory Map

• We have 2 Program Memories

• And 2 Data Memories

User Region
• Programs run by users (e.g.: factorial program)

• Processes run in user mode have PSR[15]=0 

• NOT allowed to access OS locations in memory

Operating System Region
• Programs run by OS (e.g.: I/O device programs)

• Processes run in OS mode have PSR[15]=1

• Allowed to access OS & User locations in memory

Processor Status Register
• Contains the privilege bit

• Contains the three NZP bits

User Code

User Data

OS Code

OS Data
+ Device Memory

0x0000

0x1FFF

0x2000

0x7FFF

0x8000

0x9FFF

0xA000

0xFFFF

Program 
Memory

Data
Memory

Program 
Memory

Data
Memory

16-bit addresses

16-bit contents

22

15 2 1 0

1 N Z P

LC4 Memory Map
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GETC in User Issues

23

; subroutine to read 1 character
; from the keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.CODE

.ADDR x0000
GETC

LC R0, OS_KBSR_ADDR ; load status register addr
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR ; load Data register addr
LDR R0, R0, #0

• There is a slight problem with this code

• Since it will be loaded into program memory: x0000

• the LDR statements will fail!

• Programs running in USER program memory:

• have PSR[15]=0

• they cannot access OS data memory
(where Device registers are)
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GETC in OS

24

; subroutine to read
; 1 character from the
; keyboard, return it in R0

OS_KBSR_ADDR .UCONST xFE00
OS_KBDR_ADDR .UCONST xFE02

.OS

.CODE

.ADDR x8000
GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0

BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0

SUB_

RET

• These 3 red bolded directives: 

• .OS  .CODE  .ADDR x8000

• instruct the assembler, to tell the loader, to load this 
program into OS program memory

• When the LC4 executes this code, PSR[15] must be 1

• since the PSR[15]=1, 

• this program will be allowed to LDR from OS data 
memory

• We have one small problem…

• what if we turn this into a subroutine

• how can we call this subroutine from user space?
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Calling GETC in User Memory

❖ Currently, we can’t easily run GETC

▪ When a program is running in User Program Memory, PSR[15] = 0
We can’t LDR/STR to device memory

▪ If we put GETC subroutine in OS program memory, then PSR[15] 
must already be 1 to execute it

❖ How do we call the OS code from a USER program? 
(PSR[15]=0)…

▪ JSR and JMP won’t allow it!

▪ Neither change the privilege of the program

▪ LC4 will kill any program with PSR[15]=0 that attempts to jump 
into OS memory.

❖ Answer: TRAP instruction

25
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TRAP vs JSR

❖ The TRAP instruction is very similar to a JSR:

▪ It saves PC+1 into R7

▪ It updates the PC to an offset you specify

▪ But it also elevates the privilege level of the CPU from 0 to 1

❖ The purpose of the TRAP instruction:

▪ Allow a program running in USER Program Memory, 
to call a subroutine installed in OS Program Memory

❖ Subroutines in OS code are called TRAPS

26

Mnemonic Semantics Encoding

TRAP UIMM8 R7 = PC+1, 
PC = (x8000 | UIMM8), 
PSR[15] = 1

1111----UUUUUUUU

JSR IMM11 R7 = PC+1, 
PC = (PC&x8000) | (IMM11<<4)

01101IIIIIIIIIII
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RTI vs RET

❖ The RTI instruction is very similar to a RET:

▪ It restores the PC back to the value saved in R7  (just like RET)

▪ BUT, it also lowers the privilege level of the CPU from 1 to 0

❖ The purpose of the RTI instruction:

▪ Allow a subroutine running in the OS program memory
to return to a caller in the USER program memory

27

Mnemonic Semantics Encoding

RTI PC = R7, 
PSR[15] = 0

1000------------

RET JMPR R7,  which simply sets: PC = 
R7

11000--111------
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Installing GETC into the OS 

28

; User Program Memory
.CODE
.ADDR x0000

; doing some fun stuff, like computing factorials!

; now, let’s get a character from the keyboard!

TRAP x00 ; saves R7=PC+1, sets PC = x8000 | x00,
; and PSR[15]=1

; upon return, do something with R0

; OS Program Memory
.OS
.CODE
.ADDR x8000
SUB_GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0 ; loads char from keyboard into R0
RTI ; sets PC = R7 and restores PSR[15]=0
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The Limits of the TRAP Instruction

❖ The TRAP instruction is limited.

▪ Can’t jump to anywhere in OS program memory, only the first 256 
memory locations 

▪ We could expand the immediate to be more than 8 bits,
why this limitation?

• To control what portion of OS memory the USER can jump to

▪ How it limits the user:

• In the semantics: PC = (x8000 | UIMM8)

• What is the largest 8-bit unsigned number you can make?  xFF = 255

• e.g.:   PC = x8000 | xFF = x80FF
29

Mnemonic Semantics Encoding

TRAP UIMM8 R7 = PC+1, 
PC = (x8000 | UIMM8), 
PSR[15] = 1

1111----UUUUUUUU

JSR IMM11 R7 = PC+1, 
PC = (PC&x8000) | (IMM11<<4)

01101IIIIIIIIIII
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Installing GETC into the OS Properly

30

; User Program Memory
.CODE
.ADDR x0000

; doing some fun stuff, like computing factorials!

; now, let’s get a character from the keyboard!

TRAP x00

; OS Program Memory
.OS
.CODE
.ADDR x8000
SUB_GETC

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0
RTI

We shouldn’t install our “TRAPS” starting at x8000

Why not? 
- For one, user’s might jump into the middle of our trap!

Imagine: TRAP x01?  We’d jump right into LDR R0,…

Another reason?
- Since traps take up multiple locations that can be

jumped to, longer traps restrict how many traps we
can have in the OS
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Controlling User Access to the OS

❖ Since TRAP can only jump to the first 256 locations in OS 
program memory…

▪ Make those locations all JMP to the beginning of a TRAP routine

▪ Allows us to have complete control over how users enter the OS. 
Users can’t JUMP into the middle of an OS TRAP routine 

▪ Allows us to put OS TRAPs deeper into OS Memory

31

.OS

.CODE

.ADDR x8000

JMP TRAP_GETC ; x00

JMP TRAP_PUTC ; x01

JMP TRAP_DRAW_H_LINE ; x02

…

JMP BAD_TRAP ; xFF

The first 256 lines of OS Program Memory 
called the: TRAP VECTOR TABLE

We publish this list to the user
user can call the TRAPS by number:
e.g.: TRAP x01, will call TRAP: PUTC

the table listing helps them map # to TRAP
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Installing TRAPs into the OS Properly

32

; OS Program Memory
.OS
.CODE
.ADDR x8300
TRAP_GETC ;; this is TRAP x00

LC R0, OS_KBSR_ADDR
LDR R0, R0, #0
BRzp GETC

LC R0, OS_KBDR_ADDR
LDR R0, R0, #0
RTI

TRAP_PUTC ;; this is TRAP x01
LC R1, OS_ADSR_ADDR
LDR R1, R1, #0
BRzp TRAP_PUTC
LC R1, OS_ADDR_ADDR 
STR R0, R1, #0
RTI

Start at a memory location in OS program 
memory, but AFTER the TRAP Vector Table
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Trap Execution Walkthrough

❖ When a TRAP is called:

▪ CPU sets PSR[15]=1, 

▪ stores PC+1 in R7 

▪ and Jumps to entry in the 
TRAP Table

▪ This address is a JMP 
instruction which redirects 
to the TRAP routine

33

USER CODE
PSR[15]=0

x0000

…

x0010 STR R6, R5, #0

x0011 TRAP x24

x0012 CONST R6,…

OS CODE
PSR[15]=1

x8000

x8024 JMP 
TRAP_GETC

x0011

x0012

x8200 OS_STARTS

x8300 TRAP_GETC
LC R0, 

OS_KBSR_ADDR...

…

RTI

PSR[15]=1
PC=x8024
R7=x0012
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Trap Execution Walkthrough

❖ After the TRAP routine is 
complete:

▪ it returns by using RTI, 

▪ which sets the PC to R7 

▪ which should contain the 
return address 

▪ and sets PSR[15] = 0

34

USER CODE
PSR[15]=0

x0000

…

x0010 STR R6, R5, #0

x0011 TRAP x24

x0012 CONST R6,…

OS CODE
PSR[15]=1

x8000

x8024 JMP 
TRAP_GETC

x0011

x0012

x8200 OS_STARTS

x8300 TRAP_GETC
LC R0, 

OS_KBSR_ADDR...

…

RTI

PSR[15]=1
PC=x8024
R7=x0012

PSR[15]=0
PC=R7=(x0012)
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TRAP vs SUBROUTINE

❖ TRAPs behave very similar to subroutines

▪ Data is passed in the same way

▪ Registers may still be overwritten by a TRAP or Subroutine

▪ TRAPs can access user data to read string/array inputs

▪ R7 contains the return address to go back to the caller

❖ Key Differences:

▪ Different instructions to enter/leave TRAPs and Subroutines

▪ TRAPs exist in the OS and require OS privilege

▪ Can’t call a TRAP from within another TRAP

35
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OS in the Real World:

❖ What we just created highlights the role of the OS

▪ Protecting & Abstracting away details of hardware

▪ Creating a system of handling I/O calls

❖ Real OSs handle a lot more than I/O & System Calls

▪ Sharing resources (CPU, memory, files) across multiple programs

▪ Interrupts for handing I/O instead of “polling” (manually checking 
if I/O devices are ready)

▪ Still follow similar practices with TRAP Vector Table

▪ (Take 3800 or 5480 for more!)

❖ The OS in LC4 pretty much only handles I/O

▪ There is only one program running in LC4 at a time, so these other 
features don’t make sense to implement.

36


