University of Pennsylvania

L14: Midterm Review

Midterm Review
Introduction to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema
Audrey Yang
David LuoZhang
Heyi Liu
Katherine Wang
Noam Elul

Ria Sharma

Andrew Rigas
Craig Lee
Eddy Yang
Janavi Chadha
Kyrie Dowling
Patricia Agnes
Sarah Luthra

CIS 2400, Fall 2022

Anisha Bhatia
Daniel Duan
Ernest Ng

Jason Hom
Mohamed Abaker
Patrick Kehinde Jr.
Sofia Mouchtaris

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

“n

& When poll is active, respond at pollev.com/tqm
m Text TQM to 37607 once to join

Midterm Review: Choose what we do next

Binary & 2C practice questions

Floating Point practice question

CMOS, PLA, Gate circuits practice
questions

Gate Delay practice questions

LC4 Programming practice
question

Control Signals practice quetsion

General Q & A

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.comjapp

y

S

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

Logistics

» Midterm Exam: This Wednesday “in lecture”

® Details released on the course website

- Midterm Review in recitation
" Tuesdays 6:30—-8 pm @ Moore 100a
" Wednesdays 12 - 1:30 pm @ Moore 100c

» Instructor OH shifted to 1:30 — 4:30 pm on Wednesday

- HWO03 Sample Solutions (and grades probably) posted
tonight

University of Pennsylvania

L14: Midterm Review

CIS 2400, Fall 2022

Binary & 2C

+» There are about 195 students in the class and 22 staff. If
we wanted to assign each of these individuals a unique
numerical ID, how many bits would each ID need to be?

« Translate:
= .1 into 8-bit 2C
= 7 into 4-bit 2c

" 5into 3bit unsigned

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

Floats

+» A common way of checking for equality between floats in
code is to see if the difference between the two floats

exceeds a certain magnitude instead of checking for exact

equality, Eg [bool float equals(float a, float b) {
double delta = 0.01f;
1f (abs(a - b) < delta) {

return true;

}

return false;

}

\ J

+» Why is this the case?

University of Pennsylvania L14: Midterm Review

CIS 2400, Fall 2022

CMOS, PLAS, GATES

+ Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7
= |ist the outputs that result in a 1 for the output
" Create a corresponding CMOS circuit

- Can assume you have the inverses of the Input bits

" Create a corresponding PLA circuit

" Create a corresponding gate level non-PLA circuit

University of Pennsylvania

L14: Midterm Review

CIS 2400, Fall 2022

CMOS, PLAS, GATES

+ Create a circuit that takes in an unsigned 4-bit input |

(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7

= |ist the outputs that result in a 1 for the output
= 7(0b0111) and 14 (Ob1110)

University of Pennsylvania

L14: Midterm Review

CIS 2400, Fall 2022

CMOS

» Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a

non-zero multiple of 7. You can assume you have inverse
of the input signals.

" QOverall Expression: (VI3 & 1, & I, & 1) | (I; &1, & 1; & ~I,)

10

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

CMOS Strategy 1 (Starting with PDN)

+ Overall Expression: (M, & I, & I; & 1y) | (15 &1, & 1; & ~I,)
«» PDN Expression:

= (VL &L &L &) | (&1L, &1, &™) // negate

= (VL &L & &) &~(I; &1, &1, &™) // De Morgan’s

o (PO [P i PR [9 </ o PO B PR PR I Y // De Morgan’s

« Translated to PDN:

I

AL

Qﬂ L]

12

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

CMOS Strategy 1 (Starting with PDN)

+ Flip PDN into PUN:

~1, 4# ‘O—|
B [L o
—‘ -, — ‘— - —
L — — ! —# L ‘O_ |
_ [L |
~I —{ — ~ }— -l }— | a dl O— -

.
.

13

L14: Midterm Review

CIS 2400, Fall 2022

CMOS Strategy 1 (Starting with PDN)

« Connect PDN and PUN:

T

Not the only
possible answer

o—1,

O ng

+ Qutput
— [L
Iy ‘_] ‘
1 [— I
S [L
N I Sy [B
o l_v [I

14

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

CMOS Strategy 2 (Starting with PUN)

+» Take the original expression:
" (L &L&L &™) | (Y &1, &I, &1,)
+» Translate it directly into PDN but add a negation to each

input T
" This is because PMOS transistors J _
are “naturally negating” -, ﬂ \o— A
= E.g., ~l; becomes ~~l; == I, |
" —# ‘O_ n
- —d - o— ~I

15

University of Pennsylvania

L14: Midterm Review

CIS 2400, Fall 2022

CMOS Strategy 2 (Starting with PUN)

+ Flip PUN to get PDN

]

I [|
% - . ‘— -

| | — [

I — |
‘— - %] %]

—

16

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

PLA

+ Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7

18

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

Non-PLA

+ Create a circuit that takes in an unsigned 4-bit input |
(151,1115), and outputs a 1 if and only if the 4-bit input is a
non-zero multiple of 7

20

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

Gate delay pt.1

+ Given the 4-bit incrementor that we created in lecture,
how long do we have to wait to make sure that the
output of the incrementor matches the input?

" Assume that each gate has a 1ns delay Carrying
. . 1 1
" You can ignore delay from inverters Ag+—— + =
Carrylnl CarryOuty
An Cin 1 !
A1 “ » + “ P'S-]
.__c} C?rrylnzl Ca1rryOut1
? S A+ + K »S,
1 L ' " Carryln CarryOut;
3
1T 1‘[
A‘j = + > S
T ¢ T 3
T_ / out CarryOut;

22

University of Pennsylvania

L14: Midterm Review

Gate delay pt.2

CIS 2400, Fall 2022

+» The 4-bit incrementor that we created in lecture is
currently in a stable state showing the output of 1 + 0110.
If the A input signals were to simultaneously fllp to 0111,

what would all signals be after 2ns
= Assume that each gate has a 1ns delay
= |gnore delays from inverters

® Carryln, stays the same

An Cin

+——a
>—

L Sn
@ ®

1 Cout
I/

Carrylnol

1

1
||

1

Carrylml 8arry0utﬂ

1
\

1A

1

Carrylnzl (()Zarryqu

1
A +

1
A

I-S1 1

1

1

C

Carrylns] O

1

__.4.

arryOut;

1
A

P‘Sz 1

1

C

arryOut;

0

24

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

LC4 Programming

+» Write an asm program that you can assume has:
" RO = addr of start of array
= R1 =length of array that RO refers to

= R2 = addr of start of destination array (you can assume there is
enough memory locations “free” to store the resulting array)

= R3 = Filter integer

+ Your asm should make a copy of the array referred to by
RO into the memory referred to by R1. However, you
should not include any value that is less than or equal to
the filter integer put in R3.

+ You are free to update the registers as long as the
memory referred to by R2 is properly updated and the
length of the new array is stored in R4 by the end.

26

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

Control Signals

» Bit-wise XOR operations can be used to test for equality. If
A XOR B is 0, then the two values contained the same bit
pattern. As a result, Travis wants to add the CMPX
instruction, which updates the NZP based off of the XOR
of two register values.

" Mnemonic: CMPX Rs, Rt
= Semantics: NZP = sign (Rs * Rt)
" Encoding: 0011 ttts ssxx xxxx

+» What are the control signals for this instruction?

29

L14: Midterm Review CIS 2400, Fall 2022

General Questions & Answers

+» Take questions/requests from students

34

University of Pennsylvania L14: Midterm Review CIS 2400, Fall 2022

Mnemonic Semantics Encoding

NOP PC=PC + 1 0000 000x xxxx xxxx
BRp <Label> (P) ? PC = PC + 1 + (sext(IMMS) offset to <Label>) 0000 00141 iididi dddd
BRz <Label> (Z) 7PC=PC+ 1+ (sext(IMM9) offset to <Label>) 0000 0104 iididi diddd
BRzp <Label> (Z|P) 7 PC = PC + 1 + (sext(IMM9) offset to <Label>) 0000 0114 idididi dddd
BRn <Label> (N) 7 PC=PC + 1 + (sext(IMMS) offset to <Label>) 0000 1004 iiidi diddd
BRnp <Label> (N | P) ?7PC=PC+ 1+ (sext(IMM9) offset to <Label>) 0000 1014 idididi dddd
BRnz <Label> (NIZ) 7 PC=PC + 1 + (sext(IMM9) offset to <Label>) 0000 1104 ididid ddddi
BRnzp <Label> (N|IZ|IP) 7 PC = PC + 1 + (sext(IMM9) offset to <Label>) 0000 1114 ididid ddddi
ADD Rs Rt = Rs + Rt 0001 s ss00 0Ottt
MUL Rs Rt = Rs * Rt 0001 s ss00 1ttt
SUB Rs Rt = Rs - Rt 0001 s ss01 0Ottt
DIV Rs Rt = Rs / Rt 0001 s ss01 1ttt
ADD Rs IMMH = Rs + sext(IMMBE) 0001 s ssli iiii
MOD Rs Rt = Rs % Rt 1010 s ss11 xttt
AND Rs Rt = Rs & Rt 0101 s ss00 0Ottt
NOT Rs = ~Rs 0101 s 5500 1xxx
OR Rs Rt = Rs | Rt 0101 s ss01 0Ottt
X0R Rs Rt = Rs A Rt 0101 s ss01 1ttt
AND Rs IMM5 = Rs & sext(IMME) 0101 s ss1i iiii
LDR Rs IMM6 = dmem[Rs + sext(IMMS)] 0110 s ssii iiii
STR Rt Rs IMM6 dmem[Rs + sext(IMME)] = 0111 ttts ssii iiii
CONST IMM9 = sext (IMM9) 1001 i iiddi dddi
HICONST UIMMS = (& OxFF) | (UIMMB << 8) 1 1101 ¥ uuuu uuuu
CMP Hs Rt NZP = sign(Rs - Rt) 2 0010 sss0 Oxxx xttt
CMPU HRs Rt NZP = sign(uRs - uRt) 3 0010 sss0 1xxx xttt
CMPI Rs IMM7T NZP = sign(RS - IMMT7) 0010 sss1 04iidi diddd
CMPIU Rs UIMM7 NZP = sign(uRs - UIMMT) 0010 sss1 luuu uuuu
SLL Rs UIMM4 = Rs << UIMM4 1010 s ss00 uuuu
SRA Rs UIMM4 = Rs >>> UIMM4 1010 s ss01 uuuu
SRL Rs UIMM4 = Rs >> UIMM4 1010 s 5510 uuuu
JSRR Hs R7 = PC + 1; PC = Rs 0100 Oxxs ssxx xxxx
JSR <Label> R7 = PC + 1; PC = (PC & 0x8000) | ((IMMi1 offset to <Label>) << 4) | 0100 1iii iiii ididii
JMPR HRs PC = Rs 1100 Qxxs ssxx xxxx
JMP <Label> PC = PC + 1 + (sext(IMM11) offset to <Label>) 1100 1ididi ididid ddddi
TRAP UIMME R7 = PC + 1; PC = (0x8000 | UIMMS); PSR [1k] = 1 1111 =xxx uuuu uuuu
RTI PC = R7; PSR [15] = 0 1000 xxx¥ XXAK XHAX

Single Cycle Implementation of the LC4 I1SA

ALL CTL
SIGMALS
Decode . File WE _%I:lil ______________
regriie. : ALUCTL |
g "SMCTL ; |
3 "L«-. | |
0xO7 :" | s adar . ! | reginputMux.CTL
[11:9] — AS[15:0] ; |
- o Register ! A :
I[EZD] rifux. CTL I—E|Ie : :
¢ rt.addr ! !
I[11:9] — : | DATA.WE
I
Instruction g T i ALUInputMux.CTL |
Address — : C |——#|Data Address "~
> PC[15:10] — I[15:07 rd.addr RT[15:0] N i | u
P - Memory) x07 Il A) 0 !
Instruction ! | Data Output ——3m
Write Input I | 1
‘ : B |
; | DATA =
: I[15:0] i Memory
L i
S I
I MWEFWE : e _____k 4 JI
: — I[11:9] | : =|Data Input
TEET
i il HZF
] Ragi T
| | PoMux CTL iyl :
|
. |
I I
| 1
q ™ ™
: 7 : L SEXT(SC]) : 4 4
|
1) :
I |
. - .
I A I
N ! Privilege.CTL
t + |
L 2 | SEXT{I[10:0]) 1 |
| 1
| RS[15:0] 1
|) e PSR[15]
| [0xE000 | UIMME) X
| h— I[7a] i
4
| I
: {PC & 0xB000) | {IMM11xxd) o0l I
— q 1
| 5
BN I _
| _]l 1Branch Unit
=1 PCH+1

Signal Name

of bits

Value

Action

PCMux.CTL

3

Value of NZP register compared to bits [[11:9] of the current
instruction if the test is satisfied then the output of TEST is 1 and
NextPC = BRANCH Target, (PC+1) + SEXT(IMM9); otherwise the
output of TEST is 0 and NextPC=PC + 1

Next PC=PC+1

Next PC = (PC+1) + SEXT(IMM11)

Next PC = RS

Next PC = (0x8000 | UIMMS8)

Next PC = (PC & 0x8000) | (IMM11 << 4)

rsMux.CTL

rs.addr = [[8:6]

rs.addr = 0x07

rs.addr =1[11:9]

rtMux.CTL

rt.addr = [[2:0]

rt.addr =1[11:9]

rdMux.CTL

rd.addr = 1[11:9]

rd.addr = 0x07

regFile WE

Register file not written

= O (= O = | O = O (L e (L BT | =

Register file written: rd.addr indicates which register is updated
with the value on the Write Input

reglnput Mux.CTL

Write Input = ALU output

Write Input = OQutput of Data Memory

Write Input=PC+1

NZP.WE

NZP register not updated

NZP register updated from Write Input to register file

DATA.WE

Data Memory not written

Data Input written into location on Data Address lines

Privilege.CTL

PSR[15] = 0 - Clear privilege bit

PSR[15] = 1 - Set privilege bit

b= O = D= (D =D

PSR[15] unchanged - no change to privilese bit

University of Pennsylvania

L14: Midterm Review

CIS 2400, Fall 2022

Signal Name # of bits | Value | Action
ALU.CTL 6
Arithmetic Ops 0 C=A+ B : Addition
1 C=A*B : Multiplication
2 C = A- B: Subtraction
3 C=A /B :Division
4 C =A% B : Modulus
5 C = A + SEXT(B[4:0])
6 C=A + SEXT(B[5:0])
Logical Ops 8 C = A AND B : Bitwise Logical Product
9 C =NOT A: Bitwise Negation
10 C = A OR B: Bitwise Logical Sum
11 C = A XOR B: Bitwise Exclusive OR
12 C=A AND SEXT(B[4:0])
Comparator Ops 16 C = signed-CC(A-B) [-1, 0, +1]
17 C = unsigned-CC(A-B) [-1, 0, +1]
18 C = signed-CC(A-SEXT(B[6:0])) [-1, 0, +1]
19 C = unsigned-CC(A-SEXT(B[6:0])) [-1, 0, +1]
Shifter Ops 24 C = A << B[3:0] : Shift Left Logical
25 C = A >>> B[3:0] : Shift Right Arithmetic
26 C = A >> B[3:0] : Shift Right Logical
Constant Ops 32 C = SEXT(B[8:0])
33 C = (A & OxFF) | (B[7:0] << 8)

38

