
CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

C to ASM pt. 1
Intro to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Poll:

❖ Are there any topics you would like me to talk about in
lecture?

2

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Upcoming Due Dates

❖ HW08 (Disassembler) Due Friday 11/18 @ 11:59 pm

▪ Should have everything you need

❖ Midterm regrade requests

▪ Opens at 12:01 AM on Tuesday(11/15)

▪ Close at 11:59 pm the next Tuesday (11/22)

▪ Please look at the sample solution before submitting a regrade
request

❖ Assignments will very likely take increasingly longer to
complete. Please try to not let the work accumulate

3

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Lecture Outline

❖ Binary files & Endianness

❖ Globals in ASM

❖ Maintaining the Stack in ASM

4

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Binary files & Serialization

❖ So far this lecture has implicitly assumed we are working
with files that hold text (characters)

❖ Binary files also exist where data isn’t stored as
characters. (.obj files are an example)

❖ Some data/data-structures make more sense to be stored
in binary through a process called serialization.

5

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Serialization Example:

❖ Posted on course website

▪ read_floats.c

▪ write_floats.c

❖ Notes:

▪ Don’t have to read/write an array, can read/write only one
“element”

▪ Trying to open these files in an editor will not be readable

6

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Endianness

❖ In other architectures, there is one byte at each address
location

▪ For multi-byte data, how do we order it in memory?

▪ Data should be kept together, but what order should it be?

▪ Example, store the 4-byte (32-bit) int:
0x A1 B2 C3 D4

❖ The order of the bytes in memory is called endianness

▪ Big endian vs little endian

7

Most significant Byte Least significant Byte

Each byte has its own address

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Endianness

❖ Consider our example 0x A1 B2 C3 D4

❖ Big endian

▪ Least significant byte has highest address

▪ Looks the most like what we would read

▪ The standard for storing information on files/the network

❖ Little Endian

▪ Least significant byte has lowest address

▪ What your VM probably uses

8

Most significant Byte Least significant Byte

0x2000 0x2001 0x2002 0x2003

A1 B2 C3 D4

0x2000 0x2001 0x2002 0x2003

D4 C3 B2 A1

Least significant Byte

Note how the hex digits

within a byte are still in the

same order

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

9

Practice Question pollev.com/tqm

A. 5

B. 10

C. 3

D. 6

E. I’m not sure

int num = 0xCADEDADA;

CA DE DA DA

DA DA DE CA

AC ED AD AD

AD AD ED AC

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

❖ If we have the following int which is four bytes. on a big-
endian machine, how would this be stored in memory?

10

Practice Question pollev.com/tqm

A. 5

B. 10

C. 3

D. 6

E. I’m not sure

int num = 0xCADEDADA;

CA DE DA DA

DA DA DE CA

AC ED AD AD

AD AD ED AC

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Endianness: Why it matters

❖ Since machines may store things in different byte
orderings, it causes problems when they share files or
communicate over the network.

❖ A standard ordering is used for storing binary data, big
endian (often called Network ordering).

❖ Need to make sure that we store bytes in network byte
ordering when we serialize data

11

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Endianness functions

❖ There are some functions out there that convert byte
orderings
▪ htons() -> Host to Network short (16 bits)

• Converts from Host byte ordering to network byte ordering

▪ ntohs() -> Network to Host short (16 bits)

• Converts from network byte ordering to host byte ordering

❖ “Network byte order” is big endian. Your “host” machine
is little endian

❖ More info in <arpa/inet.h>

▪ Variants also exist for 32 bit and 64 bit conversion

12

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Lecture Outline

❖ Binary files & Endianness

❖ Globals in ASM

❖ Maintaining the Stack in ASM

13

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

5-14

LC4 User Memory Layout for C

global variables

local variables
(“stack”)

x0000

x3FFF

x4000

x6FFF

x7000

x7FFF

dynamic storage
(“heap”)

x1FFF

x2000

instructions

❖ LC4 User memory has CODE
and DATA portions. But the
DATA is split into three parts
for running C code

❖ Global Variables

❖ Dynamic Storage (the heap)

❖ Local Variables (the stack)

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Global Variables in C

❖ Global variables exist outside of any function, can be
accessed from any function

❖ Exist throughout the entire lifespan of a program
15

#include <stdio.h>

#include <stdlib.h>

int x = 1;

void incr_globals() {

x++;

}

int main() {

printf("x: %d\n", x); // prints 0

incr_globals();

printf("x: %d\n", x); // prints 1

return EXIT_SUCCESS;

}

Declaring a variable outside of
a function makes it “global”

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Global Variables in Memory

❖ Global variables can be stored at a
static (un-changing) address
(similar to video memory)

❖ Reading/writing to that variable just
involves going to that static
memory location.

❖ The variable are “allocated as soon
as the program is loaded. Program
exiting will “de-allocate” t

16

global variables

local variables
(“stack”)

x0000

x3FFF

x4000

x6FFF

x7000

x7FFF

dynamic storage
(“heap”)

x1FFF

x2000

instructions

int x

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Global Initialization in ASM

❖ Global variable would be initialized when program is
loaded.

❖ Can specify initial values of
memory with .FILL directive

❖ Address x220D is arbitrary for this
example

17

int global_x = 1;

void incr_global() {

global_x++;

}

.DATA ; next portion is data

.ADDR 0x220D ; start at address 0x220d

global_x ; label for global

.FILL x0001 ; directive to initialize this

; memory location to 1 when

; program is loaded

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Global Read/Write

❖ Once we have a global, how do
we read and/or write to it?

❖ Global variables are basically
constants, we can “lookup”
them and then use that address to access it.

❖ LEA: Load Effective Address

18

int global_x = 1;

void incr_global() {

global_x++;

}

LEA R4, global_x ; r4 = &global_x

LDR R3, R4, #0 ; r3 = *r4

ADD R3, R3, #1 ; r3 = r3 + 1

STR R3, R4, #0 ; *r4 = r3

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Poll:

❖ How many LC4 instructions will be stored in the resulting
object file to represent the following LC4 code snippet:

19

pollev.com/tqm

.DATA ; next portion is data

.ADDR 0x220D ; start at address 0x220d

global_x ; label for global

.FILL x0001 ; directive to initialize this

; memory location to 1 when

; program is loaded

.CODE

; ...

; ...

LEA R4, global_x ; r4 = &global_x

LDR R3, R4, #0 ; r3 = *r4

ADD R3, R3, #1 ; r3 = r3 + 1

STR R3, R4, #0 ; *r4 = r3

A. 4

B. 5

C. 6

D. 8

E. I’m not sure

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Poll:

❖ How many LC4 instructions will be stored in the resulting
object file to represent the following LC4 code snippet:

20

pollev.com/tqm

.DATA ; next portion is data

.ADDR 0x220D ; start at address 0x220d

global_x ; label for global

.FILL x0001 ; directive to initialize this

; memory location to 1 when

; program is loaded

.CODE

; ...

; ...

LEA R4, global_x ; r4 = &global_x

LDR R3, R4, #0 ; r3 = *r4

ADD R3, R3, #1 ; r3 = r3 + 1

STR R3, R4, #0 ; *r4 = r3

These are all
labels/LC4
directives. These
just say how to
setup memory.
Not executed
during run-time

LEA is a pseudo
instruction,
made of CONST
& HICONST

B. 5

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Lecture Outline

❖ Binary files & Endianness

❖ Globals in ASM

❖ Maintaining the Stack in ASM

21

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Variables in Functions

❖ Variables declared outside of functions (global variables)
exist over the lifetime of the program

❖ What about variables in functions?

▪ Function parameters, local variables, return values etc.

▪ Exist only for the lifetime of an instance of execution of a function

▪ There may be multiple instances of a function at a time, needing
multiple (but separate) sets of variables (e.g. recursion)

▪ Where do these exist in memory?

22

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

The Stack – short version

❖ Local variables are stored in a portion of memory called
the “Stack” sometimes called the “Call Stack”.

▪ Whenever a function is invoked, we “push” a “stack frame” for
that function onto the top of the stack.

▪ The stack frame contains important information about the
execution of the function and has space for every local variable

▪ When a function exits, its stack frame is “popped” and the local
variables are “deallocated”

23

More details on how the stack

works in THIS lecture

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack Example:

24

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

sum += i;

}

return sum;

}

int main() {

int sum = sum(3);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

global variables

local variables
(“stack”)

dynamic storage
(“heap”)

instructions

Zooming in on the

bottom of the stack

Starts empty

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack Example:

25

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

sum += i;

}

return sum;

}

int main() {

int sum = sum(3);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for main is
created when CPU
starts executing it

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack Example:

26

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

sum += i;

}

return sum;

}

int main() {

int sum = sum(3);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

int n;

int sum;

int i;

Stack frame for
sum()

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack Example:

27

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

sum += i;

}

return sum;

}

int main() {

int sum = sum(3);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

sum()’s stack frame
goes away after
sum() returns.

main()’s stack frame
is now top of the stack
and we keep executing
main()

????

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack Example:

28

#include <stdio.h>

#include <stdlib.h>

int sum(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

sum += i;

}

return sum;

}

int main() {

int sum = sum(3);

printf("sum: %d\n", sum);

return EXIT_SUCCESS;

}

int sum;
Stack frame for
main()

Stack frame for
printf()

????

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Creating Functions in LC4

❖ We have something close to a function call in LC4 already,
we can use this as a starting point for LC4 functions:

▪ JSR (Jump Subroutine)

29

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Creating a Subroutine:

❖ Consider the multiply program from 3 lectures ago:

❖ How do we make this a
subroutine?

▪ Add a RET pseudo-instruction
wherever we are “done”
with the subroutine

▪ Add the .FALIGN directive
before the first label/instruction

• .FALIGN makes sure the code
starts at an address that is
a multiple of 16.

• This is needed since JSR stores
a IMM11 that is then shifted
to the left by 4

• (x << 4) == x * 16 30

;; Multiplication program

;; C = A*B

;; R0 = A, R1 = B, R2 = C

.CODE

.FALIGN

MULT

CONST R2, #0

LOOP

CMPI R1, #0

BRnz END

ADD R2, R2, R0

ADD R1, R1, #-1

BRnzp LOOP

END

RET

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Calling a Subroutine:

❖ If we wanted to call a subroutine from other LC4 Code

31

.CODE

.ADDR 0x0000

CONST R0, #5 ; Initialize input "parameters"

CONST R1, #6

JSR MULT ; call the subroutine

; resume execution here after MULT returns

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Subroutine Walkthrough

❖ When a JSR is executed:

▪ Stores PC + 1 in R7

▪ PC jumps to the address of the start
of the subroutine (which must be a
multiple of 16).

❖ During Subroutine:

▪ R0-R7 are possibly modified

▪ R7 should have the same value at the
end of the subroutine. It contains the
address needed to return to Caller

❖ After Subroutine is complete:

▪ Returns using RET (which is JMPR R7)

▪ R7 should contain the return address
32

USER CODE

x0000

…

x0010 CONST R0, #2

x0011 CONST R1, #3

x0012 JSR MULT

x0013 CMP R2, R5

… …

MULT CONST R2, #0

x0031 CMPI R1, #0

x0032 BRnz END

… …

x0036 RET (JMPR R7)

PC=x0030
R7=x0013

PC = R7=x0013

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Subroutine vs Functions

❖ Calling: Subroutines can be invoked and returned from
similar to functions

❖ "Parameters": Subroutines can designate some registers
to contain “inputs” that are set by the caller.

▪ What if there are more than 7 parameters??

❖ "Return Values": Subroutines can designate a register to
store their "result" in (if there is one)

❖ "Variables"

▪ The same registers R0-R7 are used inside and outside a
subroutine and could be modified

▪ What if there are more than 7 variables??

▪ Where would we be able to store variables without overwriting
other data?

33

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack Frames

❖ We need to be able to allocate space for variables local to
a function

▪ Local variables, parameters, return values, etc

❖ Space to hold local variables is the point of the Stack!

❖ For each function call, we need to maintain a
Stack Frame:

▪ Portion of stack dedicated to that function’s local variables

▪ Also stores return address so that we can call functions and still
be able to return the caller

▪ Stores/maintains pointers to keep track of the stack frame

• Frame Pointer

• Stack Pointer (top of the current frame)

34

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

LC4 Stack Frame Layout

❖ A Frame holds a few things

▪ Local variables, return value, arguments

▪ Return address (where to return to after this function)

▪ A copy of the previous frame pointer (so we can restore it after
this function finishes)

▪ Temporary Data

▪ Arguments to other functions we call from this function (callees)

35

Temporary data, arguments to callees

Local Variables

Caller’s Frame Pointer

Return Address

Return Value

Arguments

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

LC4 Stack Frame Management

❖ Use two pointers to keep track of the current Stack frame

▪ R5: Frame Pointer. Points to the previous frame pointer. Stays
constant while executing this function. Useful reference point for
getting arguments from caller, local variables setting up, and
returning from function

▪ R6: Stack Pointer. Points to the top of the Stack (which is the top
of the currently executing function’s frame). Grows as we add
new data to the stack (arguments to callees, temp data, etc).

36

Temporary data, arguments to callees

Local Variables

Caller’s Frame Pointer

Return Address

Return Value

Arguments

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Example Stack Walkthrough

❖ Lets manually compile this code into LC4:

37

int sum(int n) {

int sum = 0;

int i;

for (i = 0; i < n; i++) {

sum += i;

}

return sum;

}

int main() {

int res;

res = sum(3);

return 0;

}

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Example Stack Walkthrough

❖ Let’s start with main():

▪ Prologue is where a function begins to construct its frame

▪ main() is called using JSR; let’s assume R7=x0005 for this example

▪ before main() was called, assume R6 = x7FFF (start of the stack),
R5=x0000 (no frames)

38

int main() {

int res;

res = sum(3);

return 0;

}

.CODE

.FALIGN

main

;; prologue

STR R7, R6, #-2 ;; save return address

STR R5, R6, #-3 ;; save base pointer

ADD R6, R6, #-3

ADD R5, R6, #0 ;; update fp

;; more later

R6
x7FFE

x7FFF

x7FFC

x7FFD

STACK:

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Example Stack Walkthrough

❖ Let’s start with main():

▪ Prologue is where a function begins to construct its frame

▪ main() is called using JSR; let’s assume R7=x0005 for this example

▪ before main() was called, assume R6 = x7FFF (start of the stack),
R5=x0000 (no frames)

39

int main() {

int res;

res = sum(3);

return 0;

}

.CODE

.FALIGN

main

;; prologue

STR R7, R6, #-2 ;; save return address

STR R5, R6, #-3 ;; save base pointer

ADD R6, R6, #-3

ADD R5, R6, #0 ;; update fp

;; more later

R6
x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R5

R6

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

.CODE

.FALIGN

main

;; prologue

STR R7, R6, #-2 ;; save return address

STR R5, R6, #-3 ;; save base pointer

ADD R6, R6, #-3

ADD R5, R6, #0 ;; update fp

ADD R6, R6, #-1 ;; allocate stack space for local variables

;; more later

Stack Walkthrough Cont.

40

int main() {

int res;

res = sum(3);

return 0;

}

x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R6

R5
x7FFB

x7FFA

x7FF9

Local variable (res)

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

.CODE

.FALIGN

main

;; prologue (removed for space)

;; function body

CONST R7, #3

ADD R6, R6, #-1

STR R7, R6, #0

JSR sum

;; more later

Calling a Function

41

int main() {

int res;

res = sum(3);

return 0;

}

x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R6

R5
x7FFB

x7FFA

x7FF9

Local variable (res)
Argument to sum (3)

Making it a different color since this
is “shared” with the sum function

3

; Jumps to the Sum function, need to see what it does to the stack

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Creating sum’s stack frame

42

.CODE

.FALIGN

sum

;; prologue

STR R7, R6, #-2 ;; save return address

STR R5, R6, #-3 ;; save base pointer

ADD R6, R6, #-3

ADD R5, R6, #0 ;; update fp

ADD R6, R6, #-2 ;; allocate stack space for local variables

CONST R7, #0

STR R7, R5, #-2

CONST R7, #0

STR R7, R5, #-1

Prologue always
the same for lcc

First thing after
prologue is to
setup local vars

int sum(int n) {

int sum = 0;

int i;

for (i = 0; i < n; i++) {

sum += i;

}

return sum;

}

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Stack at the start of Sum

❖ After creating the local variables for Sum, our stack looks
like:

43

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

res (????)x7FFB

n (3)x7FFA

x7FF9

local variables for main

x7FF8

x7FF7

R6

Arguments to sum
RV (????)

i (0)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

sum’s future return value

caller’s (main’s) frame pointer
caller’s (main’s) return address

local variables for sum

Recall, in main(): JSR sum is @address: x0061, thus RA=x0062

main’s
frame

sum’s
frame

STACK: sum()’s frame pushed on top of main()'s

sum (0) local variables for sum

R5

R5

R6

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Poll:

❖ If I wanted to load argument N into R7, which instruction
would most reliably do that?

44

pollev.com/tqm

A. LDR R7, R5, #(n + 3)

B. LDR R7, R5, #-(n +3)

C. LDR R7, R6, #(n + 3)

D. LDR R7, R6, #-(n + 3)

E. I’m not sure

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

45

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6

RV (????)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

Red arrow is next instruction
to execute

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

46

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6

RV (????)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

R7 6

Red arrow is next instruction
to execute

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

47

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6

RV (????)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

Local variables are not really “deallocated”, we just treat
anything past the stack pointer (R6) as garbage data.
Accessing that data from the user perspective is
undefined behaviour

R7 6

Red arrow is next instruction
to execute

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

48

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6
RV (????)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

R7 6

Red arrow is next instruction
to execute

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

49

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6
RV (6)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

R7 6

Red arrow is next instruction
to execute

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

50

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6
RV (6)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

R7 6

Red arrow is next instruction
to execute

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Function Epilogue

❖ Once a function is done, it needs to store the return value
in R7 and execute the epilogue:

51

sum

;; function body (skipped for time)

;; epilogue

LDR R7, R5, #-2 ;; R7 = sum

L1_sum

;; epilogue

ADD R6, R5, #0 ;; pop locals

ADD R6, R6, #3

STR R7, R6, #-1 ;; store RV

LDR R5, R6, #-3 ;; restore FP

LDR R7, R6, #-2 ;; restore RA

RET

FP (x0000)

x7FFE

x7FFF

x7FFC

x7FFD RA (x0005)

res (????)x7FFB

n (3)x7FFA

x7FF9

x7FF8

x7FF7

R6
RV (6)

i (3)

RA (x0062)

x7FF5

x7FF6

FP (x7FFC)

STACK:

sum (6)

R5

R7 0x0062

Red arrow is next instruction
to execute

Ret will return us to main()’s code to keep executing

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

res(????)

.CODE

.FALIGN

main

;; prologue (removed for space)

;; function body

JSR sum

LDR R7, R6, #-1 ; grab return value

ADD R6, R6, #1 ; free space for args

STR R7, R5, #-1 ; store return value in res local var

;; R7 = 0 and epilouge (removed for space)

Returning to the caller

52

int main() {

int res;

res = sum(3);

return 0;

}

x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R6

R5
x7FFB

n (3)x7FFA

RV (6)x7FF9

Local variable (res)
Argument to sum (3)
Return value from sum (3)

Return value placed just above the stack.
Sometimes we call functions without using the return value

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

res(????)

.CODE

.FALIGN

main

;; prologue (removed for space)

;; function body

JSR sum

LDR R7, R6, #-1 ; grab return value

ADD R6, R6, #1 ; free space for args

STR R7, R5, #-1 ; store return value in res local var

;; R7 = 0 and epilouge (removed for space)

Returning to the caller

53

int main() {

int res;

res = sum(3);

return 0;

}

x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R6

R5
x7FFB

n (3)x7FFA

RV (6)x7FF9

Local variable (res)
Argument to sum (3)
Return value from sum (3)

R7 6

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

res(????)

.CODE

.FALIGN

main

;; prologue (removed for space)

;; function body

JSR sum

LDR R7, R6, #-1 ; grab return value

ADD R6, R6, #1 ; free space for args

STR R7, R5, #-1 ; store return value in res local var

;; epilouge (removed for space)

Returning to the caller

54

int main() {

int res;

res = sum(3);

return 0;

}

x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R6

R5
x7FFB

n (3)x7FFA

RV (6)x7FF9

Local variable (res)

R7 6

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

res(6)

.CODE

.FALIGN

main

;; prologue (removed for space)

;; function body

JSR sum

LDR R7, R6, #-1 ; grab return value

ADD R6, R6, #1 ; free space for args

STR R7, R5, #-1 ; store return value in res local var

;; R7 = 0 and epilouge (removed for space)

Returning to the caller

55

int main() {

int res;

res = sum(3);

return 0;

}

x7FFE

x7FFF

x7FFC

x7FFD

STACK:

FP (x0000)

RA (x0005)

arguments to main from caller
main’s return value

caller’s frame pointer
caller’s return address

R6

R5
x7FFB

n (3)x7FFA

RV (6)x7FF9

Local variable (res)

R7 6
main()’s epilogue will be the same as sum()’s. The only difference
is how we store the return value into R7 before the epilogue.

CIS 240, Fall 2022L19: C to ASM pt. 1University of Pennsylvania

Next Time:

❖ More practice with this

❖ More C -> ASM

❖ Implications of the stack system

56

