
CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

C to ASM pt. 3 (Control Structures)
Intro to Computer Systems, Fall 2022

Instructor: Travis McGaha

TAs:

Ali Krema Andrew Rigas Anisha Bhatia

Audrey Yang Craig Lee Daniel Duan

David LuoZhang Eddy Yang Ernest Ng

Heyi Liu Janavi Chadha Jason Hom

Katherine Wang Kyrie Dowling Mohamed Abaker

Noam Elul Patricia Agnes Patrick Kehinde Jr.

Ria Sharma Sarah Luthra Sofia Mouchtaris



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Upcoming Due Dates

❖ HW10/11 (J compiler) to be released soon

▪ (Hopefully tonight)

▪ Should have everything you need

▪ HW10 & 11 make up a 2-part assignment that take a while to 
complete.

▪ Recitation for this assignment has been VERY helpful

❖ Midterm regrade requests

▪ Close tomorrow at 11:59 pm the next Tuesday (11/22)

▪ Please look at the sample solution before submitting a regrade 
request

❖ Check-in 9 “the make-up” check-in 
due Monday 11/28 @ 4:59 pm before lecture.

2



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Lecture Outline

❖ Compilation Process

❖ Control Structures

4

Important for 

HW10 & HW11



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

400575: 01 fe

89 32

c3

C to Machine Code

C source file
(sumstore.c)

Assembly file 
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,

int* dest) {

*dest = x + y;

}

sumstore:

addl %edi, %esi

movl %esi, (%rdx)

ret

Machine code
(sumstore.o)

C compiler 
(gcc –c)

5

We’ve been 

focusing on this

This is mostly a 

direct translation



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Compile Time vs Runtime

❖ Compile time: translates input code to Assembly

▪ LC4 instructions & pseudo instructions

▪ LC4 directives for assembler to setup memory

▪ Labels, Function epilogue/prolouges

▪ The output is an ASM file (THAT IS IT)

❖ Run time: runs the assembly code output

▪ Executes instructions 

▪ Performs computation specified by the program

❖ Common conceptual error for HW10/11
is mixing up the two

6



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Lecture Outline

❖ Compilation Process

❖ Control Structures

7

Important for 

HW10 & HW11



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4 
instructions

❖ How would we implement
if (R0 >= 3)

R1 = R0;

8

START

CMPI R0, #3

BRn AFTER_IF

ADD R1, R0, #0

AFTER_IF

; ...



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4 
instructions

❖ How would we implement
if (R0 != R2) {

R1 = R2;

} else {

R1 = 0;

}

9

START

CMP R0, R2

BRz ELSE

ADD R1, R2, #0

JMP AFTER

ELSE CONST R1, #0

AFTER

; ...



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4 
instructions

❖ How would we implement
while (R0 != 2) {

// ...

}

10

START_LOOP

CMPI R0, #2

BRz AFTER_LOOP

; ...

JMP START_LOOP

AFTER_LOOP

; ...



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

LC4 Review: If & Loops in LC4

❖ Not all programming constructs have direct LC4 
instructions

❖ How would we implement
for (R0 = 0; R0 < R6; R0++) {

// ...

}

11

CONST R0, #0

START_LOOP

CMP R0, R6

BRzp AFTER_LOOP

; ...

ADD R0, R0, #1

JMP START_LOOP

AFTER_LOOP

; ...



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Note On Labels

❖ When you are writing LC4 assembly, the labels you use 
must be unique.

▪ If you use the same label more than once, the assembler will not 
know which location you are referring to with JMP <LABEL>

❖ To avoid name conflicts, it is common to number the 
labels or give more specific names.

❖ Instead of just using LOOP

▪ LOOP_1

▪ LOOP_2

▪ SUM_NUM_LOOP

▪ etc.

12



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Compiler Pseudo Code

❖ The compiler you create for HW10/11 will read tokens
sequentially from a file and generate the output asm
based on those tokens

13

void gen_asm(token t) {

if (token.type == PLUS) {

// generate assembly for addition

} else if (token.type == AND) {

// generate assembly for AND operation

} else if (token.type == DEFUN) {

// generate assembly for the start of

// DEfining a FUNction

} else if (token.type == IF) {

// generate assembly for the start of an IF

} else if ...

}

NOTE: this is PSEUDO CODE, lots of details 

missing and you don’t have to follow this in HW10/11



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Compiling an If Statement

❖ How do we generate the ASM for an IF
statement?

14

if

// ...

else

// ...

endif

void gen_asm(token t) {

// ...

} else if (token.type == IF) {

// generate assembly for the start of an IF

} else if (token.type == ELSE) {

// generate assembly for the ELSE

} else if (token.type == ENDIF) {

// generate assembly for the end of the IF

} 

}

Input J pseudo code

Compiler pseudo code



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Compiling an If Statement

❖ How do we generate the ASM for an IF
statement?

❖ How do we generate this while going
Sequentially one token at a time?

15

if

// ...

else

// ...

endif

Input J pseudo code

Sample Output:

CMP ...

BRz ELSE_N

; ...

JMP AFTER_N

ELSE_N

; ...

AFTER_N



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Compiling an If Statement

❖ How do we generate the ASM for an IF
statement?

16

if

// ...

else

// ...

endif

Input J pseudo code

Sample Output:

CMP ...

BRz ELSE_N



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Compiling an If Statement

❖ How do we generate the ASM for an IF
statement?

❖ We could continue, but this assumes
that we will eventually read an
ELSE token

❖ What if there isn’t an else statement?

17

if

// ...

else

// ...

endif

Input J pseudo code

Sample Output:

CMP ...

BRz ELSE_N

; ...

JMP AFTER_N

ELSE_N

if

// ...

endif

This lecture is not trying to give you the answer to how

to generate code, but is trying to point out things you 

should think about before/while writing your compiler



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Nested Control Structures

❖ Control structures can have other nested
control structures. These can be if/else/endif
and loops

❖ How do we handle these?

❖ Two common options:

▪ Use recursion! E.g. when an IF token is identified, generate the
ASM you can generate, then recursively call to generate the body 
of the IF Branch or other control structure bodies. 

▪ Maintain a Deque or Stack data structure to keep track of which 
“level of nestedness” you are currently in. When you enter a 
control structure push some data into the structure, when you 
leave, pop some data

18

if

if

// ...

endif

// ...

else

// ...

endif



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Many Translations

❖ There are many ways to translate C code to ASM. 
Consider the following C code and two different LC4 
translations.

19

CONST R1, #0

START_LOOP

CMPI R1, #0

BRnz AFTER_LOOP

ADD R2, R2, R0

ADD R1, R1, #-1

JMP START_LOOP

AFTER_LOOP

; ...

for (B = 0; B > 0; B--) {

C += A;

}

CONST R1, #0

JMP TEST

BODY

ADD R2, R2, R0

ADD R1, R1, #-1

TEST

CMPI R1, #0

BRp BODY

AFTER_LOOP

; ...

Your compiler can translate things to 

ASM however it likes, as long as it works



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Poll:

❖ Which of the two implementations of a for loop will
generally take less instructions to execute 

20

pollev.com/tqm

A. B.

C. We’re lost..

CONST R1, #0

START_LOOP

CMPI R1, #0

BRnz AFTER_LOOP

ADD R2, R2, R0

ADD R1, R1, #-1

JMP START_LOOP

AFTER_LOOP

; ...

CONST R1, #0

JMP TEST

BODY

ADD R2, R2, R0

ADD R1, R1, #-1

TEST

CMPI R1, #0

BRp BODY

AFTER_LOOP

; ...



CIS 240, Fall 2022L21: C to ASM pt. 3 (Control Structures)University of Pennsylvania

Performance

❖ LCC uses the more efficient loop ASM translation.

▪ More Instructions -> More Clock Cycles -> More Time

❖ Modern Compilers perform many operations to squeeze 
out as much performance as possible. To make your code 
run as fast as possible

▪ Keeping arguments/variables in registers avoids having to load 
and store memory (which takes more instructions)

▪ inline functions in C: instead of dealing with the overhead of 
calling a function, put the body of this function’s code directly in
the body of the caller. 

22

There will likely be a question related to this on 

the final. There have been these on old finals


