
R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 Design and PennSim
CIS 2400 Recitation 4

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Recitation Outline

● LC4 Design
○ Review
○ Practice

● VM Demo
○ Terminal
○ PennSim

2

R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 Design

3

R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 ISA

● All LC4 instructions are associated with
● Handout located on the course website

○ https://www.seas.upenn.edu/~cis2400/current/documents/LC4Instruct
ions.pdf

● Will be provided as references on the exam

4

https://www.seas.upenn.edu/~cis2400/current/documents/LC4Instructions.pdf
https://www.seas.upenn.edu/~cis2400/current/documents/LC4Instructions.pdf

R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 Review

● All code can be deconstructed down to instructions

● These instructions can do many of the basic operations we are
used to seeing in code
○ Example: how would we write
int R0 = 0;
R0--;
In LC4?

5

PRO TIP: look at the LC4
Instruction sheet

CONST R0, #0
ADD R0, R0, #-1

R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 Review: If & Loops in LC4

● Not all programming constructs have direct LC4 instructions

● How would we implement
if (R0 >= 3)
 R1 = R0;

6

START
CMPI R0, #3
BRn AFTER_IF
ADD R1, R0, #0

AFTER_IF ...

R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 Review: If & Loops in LC4

● Not all programming constructs have direct LC4 instructions

● How would we implement
if (R0 != R2) {
 R1 = R2;
} else {
 R1 = 0;
}

7

START
CMP R0, R2
BRz ELSE
ADD R1, R2, #0
JMP AFTER

ELSE CONST R1, #0
AFTER

...

R4: LC4 Design and PennSim CIS 2400, Fall 2022

LC4 Review: If & Loops in LC4
● Not all programming constructs have direct LC4 instructions

● How would we implement

for (R0 = 0; R0 < R6; R0++) {
 // ...
}

8

CONST R0, #0
START_LOOP

CMP R0, R6
BRzp AFTER_LOOP
; ...
ADD R0, R0, #1
JMP START_LOOP

AFTER_LOOP
...

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Assembly Programming Strategy

● One approach

○ Start by writing a pseudocode program
■ Try to keep code “simple”

● don’t overuse variables, avoid recursion, etc

■ Comment while you do this

○ Translate each variable to a register

○ Translate each line/piece of code to assembly

○ Test your assembly to make sure it works

9

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Practice: Fibbonacci

● Write an LC4 assembly program that computes the nth Fibonacci

number where n is provided in R0 and the output number is produced

in R1.

○ You can assume that the value provided in R0 will be greater than or equal to 2.

○ Note:

■ Fibb(0) = 0

■ Fibb(1) = 1

■ Fibb(2) = 1

■ Fibb(n) = Fibb(n-1) + Fibb(n-2)

10

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Practice: Fibonacci
● Pseudocode

iter = 2
prev = 1
curr = 1
while(iter != N) {
 tmp = curr + prev
 prev = curr
 curr = tmp
 iter++
}
result = curr

11

CONST R2, #2
CONST R3, #1
CONST R4, #1

LOOP CMP R2, R0
BRz DONE
ADD R5, R3, R4
ADD R3, R4, #0
ADD R4, R5, #0
ADD R2, R2, #1
JMP LOOP

DONE ADD R1, R4, #0
END

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Practice: Prefix Sum

● Write an LC4 assembly program that computes the prefix sum for a
given list. A pointer to the initial list is given in R0, with its length in R1,
and a pointer to an output list is in R2.
○ You can assume that the length of the list is at least 1 and that the output list is

the same length as the input list.

○ Example:
■ Prefix_Sum([1, 3, -2, 4], 4)

■ = [1, 1+3, 1+3+-2, 1+3+-2+4]

■ = [1, 4, 2, 6]

12

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Practice: Prefix Sum
iters = 0
sum = 0
while(iters < len) {
 temp = mem[input_ptr]
 sum += temp
 mem[output_ptr] = sum
 output_ptr++
 input_ptr++
 iters++
}

13

CONST R3, #0
CONST R4, #0

LOOP CMP R3, R1
BRzp END
LDR R5, R0, #0
ADD R4, R4, R5
STR R4, R2, #0
ADD R2, R2, #1
ADD R0, R0, #1
ADD R3, R3, #1
JMP LOOP

END

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Terminal + PennSim Demo

14

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Linux Command Line

● Why do we need it?

○ Allows for greater control of the computer

○ Can run and combine programs in ways that we lack with the GUI

15

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Linux Commands Reference

● cd <path>
○ Changes what directory you are currently in to the one specified by the path

● ls <path>
○ Lists all entries in the specified directory, or current directory if path is not

specified

● cp <source> <destination>
○ Copies the source file to the specified destination file

● mv <source> <destination>
○ Like cp, but moves instead of copies

● rm <path>
○ Removes a specified file

16

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Linux Commands Reference

● touch <path>
○ Creates an empty file

● mkdir <path>
○ Creates a directory at the specified path

● sudo <command>
○ Runs the specified command as super user/administrator
○ (Super User DO)

● All of these commands have optional input flags that provide other
functionality

17

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Linux Commands Reference (Advanced)

● nano <path>
○ Opens the specified file in the terminal with the simple text editor “nano”

● vim <path>
○ Opens the specified file in the terminal with a more complex text editor “vim”.

(Travis uses for almost everything)

● emacs <path>
○ Like vim, but a different editor

● find
○ Used for finding a specified file

● grep <regex>
○ Searches through some input for anything matching the regex

18

R4: LC4 Design and PennSim CIS 2400, Fall 2022

Linux Commands

● There’s a lot more commands and ways to combine them!

● If you ever forget a command, Google!

19

R4: LC4 Design and PennSim CIS 2400, Fall 2022

PennSim

● Java .jar file

○ Distributable Java program that should work system-independent

● Provides a place for you to test, debug, and run LC4 code

● Will be used in some future homework assignments

20

R4: LC4 Design and PennSim CIS 2400, Fall 2022

PennSim Commands

● reset
○ resets memory, registers, and breakpoints

● as <input_asm> <output_obj>
○ Assembles (“compiles”) the asm file to an object file

● ld <obj_file>
○ Loads the specified object file into PennSim

● set <register> <value>
○ Set specified register to specified value

● break <cmd> <label>
○ Can be used to set or remove breakpoints

● trace -on <output_file>
○ Writes the trace to an output file

21

R4: LC4 Design and PennSim CIS 2400, Fall 2022

That’s all we have for today!
Reminders:

● TA-lead recitations will take place on

○ Tuesdays 6:30-8:00pm in Moore 100A

○ Wednesday 12:00-1:30pm in Moore 100C

● Check the course website for OH times

● Check-in 04 is due WEDNESDAY

● HW4 is due this Friday

22

