
R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Compiler Overview Pt. 2
CIS 2400 Recitation 11



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Recitation Outline

● Calling Functions
○ The call stack

○ Calling conventions

○ Arguments

● Unique Labels
○ Nested ifs and while loops

2



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Calling Functions

3



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack

● A portion of memory used for keeping track 

of functions

● Each invocation/execution has a stack frame 

that is pushed onto the stack.
○ The stack frame contains the local variables, 

base pointer, and return address.

4



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (simplified)

5

int foo() {
  int a = 3;
  return a + 2;
}

int main() {
  int c = 2;
  c += foo();
}

cmain’s stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (simplified)

6

int foo() {
  int a = 3;
  return a + 2;
}

int main() {
  int c = 2;
  c += foo();
}

a

cmain’s stack frame

foo’s stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (simplified)

7

int foo() {
  int a = 3;
  return a + 2;
}

int main() {
  int c = 2;
  c += foo();
}

a

cmain’s stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Some Acronyms

There are many things used to maintain the stack

● PC
○ The Program Counter. Keeps track of the next instruction to be executed

● SP
○ The Stack Pointer. Keeps track of the top of the stack (R6 in LC4)

● FP 
○ The Frame Pointer. Keeps track of the bottom of the current stack frame.  (R5 in LC4)

● RA
○ The Return Address. What to set the PC to when we return from the function so we can 

resume executing the calling function
● RV

○ The Return Value. The value returned from the function

8



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Calling Conventions

Compilers typically compile functions separately

We need a calling convention to:

● Standardize the format for arguments and return values

● Allow separately compiled functions to call each other properly

9



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Calling Conventions

To get from one function to another in a subroutine call (JSR), we need to track some 

information in order to be able to return to the caller:

● Caller’s FP

● Caller’s return address

→ Why do we need these two things?

→ Do we need to track anything else? (i.e. Caller’s PC, SP)

10



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Calling Conventions

For LC4/lcc, we use a memory-based calling convention, where arguments and return 

values passed via memory (on the stack)

For HW10/11, you’ll want to use the same calling convention as lcc so we can continue to 

use our library function (e.g. those that write to PennSim’s display)

11



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Calling Convention (Caller)

We do the following for every invocation of a function:

● Push arguments to the stack

● Call the subroutine

● (Wait for it to return)

● Copy return value

● Free RV and argument slots

12



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Calling Convention (Subroutine)

We do the following for each new function definition:

● Set up the current frame
○ Save caller’s RA and FP

○ Allocate space for the return value

○ Move into the new frame (change FP and SP)

● Execute the function body

● Restore the caller’s frame
○ Write return value to the corresponding slot

○ Free anything allocated on the stack

○ Restore caller’s FP and RA

○ Return

13



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Stack Frame Layout (lcc)

Caller’s stack frame: addresses > R5

● Caller’s saved frame pointer

● Return address/value

● Arguments

Your stack frame: addresses < R5

● Local variables

● Temporaries

● Arguments to your callees

14



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Stack Frame Layout

Differences in J

● Don’t need to allocate space for 

locals (can dynamically change 

stack)

● Don’t need to copy over 

arguments

15



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

16

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D

0x7F7E

0x7F7F

0x7F80

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP & SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

17

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D

0x7F7E

0x7F7F

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

18

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP & SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

19

0x7F79

0x7F7A

0x7F7B

0x7F7C a

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

20

0x7F79

0x7F7A

0x7F7B

0x7F7C a = 3

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP

To return, we need to:
 - Store result in designated RV slot
 - Retrieve the previous RA
 - Restore prev FP
- Set SP to top of caller’s Stack frame 



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

21

0x7F79

0x7F7A

0x7F7B

0x7F7C a = 3

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  a = 3

0x7F80 c = 3 (UPDATED!)

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

22

0x7F79

0x7F7A

0x7F7B

0x7F7C a = 3

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  a = 3

0x7F80 c = 3 (UPDATED!)

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PCFP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

We can’t give all the details, but consider the following program:

23

7 2 +

0x7F80

0x7F81

0x7F82

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

24

7 2 +

0x7F80

0x7F81

0x7F82 7

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

25

7 2 +

0x7F80

0x7F81 2

0x7F82 7

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

26

7 2 +

0x7F80

0x7F81 2

0x7F82 9

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Arguments

In J, we have argN syntax for each argument (with 1 ≤ N ≤ 20) – these are pushed to the 

stack before the function invocation.

myFunction(a, b, c) will be called as c b a myFunction.

Within myFunction

● a = arg1
● b = arg2
● c = arg3

27



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

28

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D

0x7F7E

0x7F7F

0x7F80

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int bar(int a, int 
b) {
  int res;
  res = 2 * a * b;
  return res;
}

int main() {
  int c;
  c = bar(2, 3);
  return 0;
}

FP & SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

29

0x7F79

0x7F7A res = 12

0x7F7B FOO_FP = 0x7F81

0x7F7C FOO_RA =(c = RV) 

0x7F7D FOO_RV =  12

0x7F7E a = 2

0x7F7F b = 3

0x7F80 c = 12

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int bar(int a, int 
b) {
  int res;
  res = 2 * a * b;
  return res;
}

int main() {
  int c;
  c = bar(2, 3);
  return 0;
}

FP & SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Arguments

In J, we have argN syntax for each argument – these are pushed to the stack before the 

function invocation.

This also means we don’t need push these arguments to the callee’s stack frame since we 

will be able find them.

30



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Unique Labels

31



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Unique Labels

Remember, you cannot use offsets for JMP or BR instructions when writing LC4. You must 
use labels. 

(recall that in translating you will encounter many BR/JMP)

(what do unique labels look like?)

● Keep a counter and have the labels be variations of IF_1, ELSE_1, ENDIF_1, etc.

(info to track)

● Use stack/recursion to pop off pairs of labels

32



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Comparisons

Keep track of the branch number, 

make sure to keep a true branch and false branch

Can also store the branch number in a LIFO data structure, but comparison function is 

easier to tget

33



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If Statements

Stack approach:

Keeping track of the number of ifs you have 

encountered, storing the number into stack

● You can keep a separate if and else stack, or 

storing them in the same stack and tracking 

whether an else or if was last encountered

● Use peek to see the top of the stack

34

Recursive: still keep track of the number, using while loop to 
keep process the other tokens until ELSE is met, and then while 
loop until ENDIF 

1

2

3

4

1

2

3

if else



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

While Loops

Similar to previous implementations

Nested While loops: 

● While_num to keep track of nested whiles

● When encountering an ENDWHILE, pop the top of the stack and jump back to the 

start of the while loop, if the condition is no longer met, jump to endwhile

35



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

That’s all we have for today!
Reminders:

● TA-lead recitations will take place on

○ Tuesdays 6:30-8:00pm in Moore 100A

○ Wednesday 12:00-1:30pm in Moore 100C

● HW11 is due 12/9 at 11:59pm

● Final Exam is Thursday 12/15 from 6-8pm in MEYH B1

● Final Exam Review will take place during reading days

36



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Appendix (Recitation 10 Slides)

37



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Overview

38



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Overview

In this assignment, you will read in a .j file and create an equivalent LC4 .asm file

39

THAT’S IT
You don’t have to worry about simulating anything, setting up the PC to run main first, 
etc.



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The J Language: Basics

Stack-based language, similar to the RPN calculator from HW07

Literals: 

● All values can be represented as 16-bit 2C

● Positive or negative

● Decimal (digits and - sign) or hexadecimal (preceded by 0x) formats

Example:

40

2 5 -1 + -



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif

We can also have if/else/endif → conditional is met if value is non-zero

● Example

● Same example formatted differently (look familiar?)

41

7 2 % if 1 else 0 endif

7 2 %
if
    1
else
    0
endif



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif Example

42

7 2 % if 1 else 0 endif

7



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif Example

43

7 2 % if 1 else 0 endif

2

7



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif Example

44

7 2 % if 1 else 0 endif

2
Note that the Top 
value of the 
stack is the 
first operand!

2 % 7 = 2



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif Example

45

7 2 % if 1 else 0 endif



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif Example

46

7 2 % if 1 else 0 endif

1
2 is nonzero, so 
we push 1 to the 
stack



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If/Else/Endif Example

47

7 2 % if 1 else 0 endif

1

The else branch 
is skipped over



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

If Statements – Some Caveats

● Some if statements may not have an else statement 

● There can be programs that have many if statements
○ If you are using labels in LC4 (which you should do), you must have unique labels for the 

different IF/ELSE/ENDIF statements

● There may be some programs that have nested if/else/endif statements:

48

7 2 % if 1 endif

2 3 4 - if - if 2 else 1 endif else 0 endif



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Stack Operations

If we had a stack (bottom) 3 4 5 (top)

49

drop 3 4

dup 3 4 5 5

swap 3 5 4

rot 4 5 3



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions

J can define functions with the token `defun`

Example function:

● First token after defun should be an identifier 

naming the function

● argN gets the nth value from top of the stack 

starting before the function is invoked.

● return returns from the function, placing the 

top value of the stack as the new top value of the 

stack for the caller.

50

defun square
arg1
dup * dup
return



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

Say we have the function

and call it with

51

defun square
arg1
dup * dup
return

4 square



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

52

defun square
arg1
dup * dup
return

4 square 4



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

53

defun square
arg1
dup * dup
return

4 square 4

Caller’s 
portion of 
the stack
(e.g. 
caller’s 
stack frame)



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

54

defun square
arg1
dup * dup
return

4 square
4

4

square’s 
stack frame

caller’s 
stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

55

defun square
arg1
dup * dup
return

4 square

4

4

4

square’s 
stack frame

caller’s 
stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

56

defun square
arg1
dup * dup
return

4 square
16

4

square’s 
stack frame

caller’s 
stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

57

defun square
arg1
dup * dup
return

4 square

16

16

4

square’s 
stack frame

caller’s 
stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

J Functions: Example

58

defun square
arg1
dup * dup
return

4 square
16

4

This is all J at a high 
level, many LC4 details 
left out (for now)

caller’s 
stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Code Structure

59



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Getting Started

● To get started with the homework, we recommend that you implement token.c to 

read from a file and output tokens.

● A ‘token’ in a .j file can be ‘arg1’, ‘+’, ‘defun’, etc.

● We represent a token with:

60

typedef struct {
  token_type type;
  int literal_value;
  int arg_no;
  char str[MAX_TOKEN_LENGTH];
} token;

Enum similar to INSN_TYPE

The value if the token is a literal 
(e.g. ‘5’ or ‘0xCAFE’)

Value of N for argN

Str value of a IDENT token
(more on IDENT in a moment)



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Getting Started

The token types are mostly self explanatory, with two exceptions (IDENT, LITERAL)

● DEFUN -> “defun” in the .j file

● ARG -> “arg1” or som other argN in the.j file

● Etc.

61

typedef enum { DEFUN, IDENT, RETURN,
               PLUS, MINUS, MUL, DIV, MOD,
               AND, OR, NOT,
               LT, LE, EQ, GE, GT,
               IF, ELSE, ENDIF, WHILE,
               DROP, DUP, SWAP, ROT,
               ARG, LITERAL, BAD_TOKEN } token_type;



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

LITERAL Token

● Used to represent an integer “literal” in j

● For example, in the program

7, 5 and 4 are literals.  

● Can have a leading ‘-’ to mark the number as negative

○ Be careful! There is also a token that is just the ‘-’ symbol

● Can be in hexadecimal e.g.

62

7 5 4 + -

0x7 5 0x0004 + -



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

IDENT Token

● Used to find tokens that identify a function

● In the example program, there are 3 ident tokens

● A token is an IDENT if it is not one of the other 

token types, starts with a  letter and the following 

characters can be under scores ‘_’, numbers, or 

other letters

● You can assume that all calls to functions are to 

defined functions and that there are no duplicate 

function names

63

defun square
arg1
dup *
return

defun main
4 square
return



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

token.h

● In token.h, we provide the declaration for the function:

○ Takes in a FILE* theFile to read from
○ Returns a token through theToken output parameter
○ Returns whether an error was encountered or not

● Many way to read the file:
○ Read the file line by line (using something like fgets)
○ Read the file string by string (probably using fscanf)
○ Read the file character by character (using fgetc)
○ Some combination of these

● You are also allowed to modify this function

64

int read_token(token *theToken, FILE *theFile);



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Token Processing

With how J works, almost all tokens can be processed on their own (e.g. you don’t have to 

read future tokens and/or remember pass tokens to process it)

There are two exceptions to this:

● Function definitions
○ Need to read the defun token and the next token which should be an IDENT for the 

function name

● The if/else/endif tokens
○ Need to know the labels to jump to, and handle nested if/else/endifs

65



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Program Structure

Main program:

66

in_f = fopen(input_file_name)
out_f = fopen(output_file_name)
token
while readtoken(&token, in_f) not error:

// write the assembly to out_f
// based on what token is

This part is up to you, could create function(s) to handle this.



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Functions

67



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack

● A portion of memory used for keeping track 

of functions

● Each invocation/execution has a stack frame 

that is pushed onto the stack.
○ The stack frame contains the local variables, 

base pointer, and return address.

68



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (simplified)

69

int foo() {
  int a = 3;
  return a + 2;
}

int main() {
  int c = 2;
  c += foo();
}

cmain’s stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (simplified)

70

int foo() {
  int a = 3;
  return a + 2;
}

int main() {
  int c = 2;
  c += foo();
}

a

cmain’s stack frame

foo’s stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (simplified)

71

int foo() {
  int a = 3;
  return a + 2;
}

int main() {
  int c = 2;
  c += foo();
}

a

cmain’s stack frame



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Some Acronyms

There are many things used to maintain the stack

● PC
○ The Program Counter. Keeps track of the next instruction to be executed

● SP
○ The Stack Pointer. Keeps track of the top of the stack (R6 in LC4)

● FP 
○ The Frame Pointer. Keeps track of the bottom of the current stack frame.  (R5 in LC4)

● RA
○ The Return Address. What to set the PC to when we return from the function so we can 

resume executing the calling function
● RV

○ The Return Value. The value returned from the function

72



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

73

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D

0x7F7E

0x7F7F

0x7F80

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP & SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

74

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D

0x7F7E

0x7F7F

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

75

0x7F79

0x7F7A

0x7F7B

0x7F7C

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP & SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

76

0x7F79

0x7F7A

0x7F7B

0x7F7C a

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

77

0x7F79

0x7F7A

0x7F7B

0x7F7C a = 3

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP

To return, we need to:
 - Store result in designated RV slot
 - Retrieve the previous RA
 - Restore prev FP
- Set SP to top of caller’s Stack frame 



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

78

0x7F79

0x7F7A

0x7F7B

0x7F7C a = 3

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PC

FP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

The Call Stack: C Example (LC4 Details)

79

0x7F79

0x7F7A

0x7F7B

0x7F7C a = 3

0x7F7D FOO_FP = 0x7F81

0x7F7E FOO_RA =(c = RV) 

0x7F7F FOO_RV =  --

0x7F80 c

0x7F81 PREV_FP = ?

0x7F82 PREV_RA = ?

0x7F83 MAIN_RV = --

int foo() {
  int a;
  a = 3;
  return a;
}

int main() {
  int c;
  c = foo();
  return 0;
}

PCFP

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

We can’t give all the details, but consider the following program:

80

7 2 +

0x7F80

0x7F81

0x7F82

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

81

7 2 +

0x7F80

0x7F81

0x7F82 7

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

82

7 2 +

0x7F80

0x7F81 2

0x7F82 7

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

How Does This Apply To J?

83

7 2 +

0x7F80

0x7F81 2

0x7F82 9

0x7F83 ----

PC

SP



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Assembler Directives

There are two assembler directives you will need for this assignment

● .CODE
○ Tells the assembler that we are about to start a new section of instruction code. Store this 

in the appropriate memory segment

● .FALIGN
○ Align the current address to the next multiple of 16.

○ Necessary for functions since functions must start at an offset that is a multiple of 16 for 

JSR to work

84



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Tips

85



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

This didn’t cover everything

This presentation is already probably too long…

Some difficulties you may need to figure out

● We didn’t actually show any LC4 instructions, just high-level ideas
○ Look to lectures and old recitations for this

● Unique labels, nested if/else/endif, literals that need const & hiconst, etc.

86



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Unique Labels

Remember, you cannot use offsets for JMP or BR instructions when writing LC4. You must 
use labels

You will need to use labels to implement IF/ELSE/ENDIF and WHILE

● What happens if you have many IF/ELSE/ENDIF blocks?
● Will need unique labels for each block
● Solution: Keep a counter and have the labels be variations of IF_1, ELSE_1, ENDIF_1, 

etc.

87



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Nested If/Else/Endif

● What happens if there are many nested if/else/endifs?
● What if some of them are if/endifs?

● There are two main approaches to handling this.
○ Using recursion
○ Using a stack data structure similar to HW6

■ THIS IS NOT THE SAME AS THE CALL STACK IN LC4. THIS IS A C DATA 
STRUCTURE THAT WOULD BE USED IN YOUR CODE TO GENERATE THE 
LC4.

88

2 3 4 - if - if 2 endif 1 else 0 endif



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Testing

● It is probably worth testing your read_token implementation (but not required)

● Write a short program that continuously reads tokens from a file and prints them out

● Test them on ALL provided test cases to make sure that it works

89



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Testing

To test the program the final program, do the following

● Run your program on a .j file to create the corresponding .asm file

● Use PennSim to run the test case. Make sure you use the provided script and have 

the necessary files (e.g. os.asm)

● Check to see if the output is the same

90



R11: J Compiler Overview Pt. 2 CIS 2400, Fall 2022

Error Checking

● We will largely testing correct .j files

● It is still a good idea to add error checking to make sure you are handling things 

correctly
○ There shouldn’t be a defun or return in the middle of an IF/ELSE/ENDIF block.

○ You shouldn’t run into any BAD_TOKENS 

○ The token after a defun should be an ident used for the function name

91


