Mostly a review of induction.

Problem B1 (50 pts). Let \(S : \mathbb{N} \to \mathbb{N} \) be the function given by

\[
S(n) = n + 1, \quad \text{for all } n \in \mathbb{N}.
\]

Define the function \(\text{add} : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) recursively as follows for all \(m, n \in \mathbb{N} \):

\[
\begin{align*}
\text{add}(m, 0) &= m, \\
\text{add}(m, S(n)) &= S(\text{add}(m, n)).
\end{align*}
\]

(A) \(\text{add}(m, 0) = m \)

(B) \(\text{add}(m, S(n)) = S(\text{add}(m, n)) \)

(1) Prove that

\[
\text{add}(\text{add}(m, n), p) = \text{add}(m, \text{add}(n, p))
\]

for all \(m, n, p \in \mathbb{N} \). In other words, \(\text{add} \) is associative.

Hint. Use induction on \(p \). It turns out that \(\text{add}(m, n) = m + n \), where + is the usual addition of natural numbers but *you can’t use this fact!*

(2) We would like to prove that

\[
\text{add}(m, n) = \text{add}(n, m), \quad \text{for all } m, n \in \mathbb{N}
\]

but this is a little tricky. First prove

(2a)

\[
\text{add}(0, n) = n, \quad \text{for all } n \in \mathbb{N}.
\]

Also prove

(2b)

\[
\text{add}(S(m), n) = S(\text{add}(m, n)), \quad \text{for all } m, n \in \mathbb{N}.
\]

Hint. Use induction on \(n \).

Finally, prove that

\[
\text{add}(m, n) = \text{add}(n, m), \quad \text{for all } m, n \in \mathbb{N}.
\]
In other words, \(add \) is commutative.

Hint. Use induction on \(m \).

Problem B2 (10 pts). Let \(\Sigma \) be any alphabet. For any string \(w \in \Sigma^* \) recall that \(w^n \) is defined inductively as follows:

\[
\begin{align*}
w^0 &= \epsilon \\
w^{n+1} &= w^n w, \quad n \in \mathbb{N}.
\end{align*}
\]

For any string \(w \in \Sigma^* \) and any natural numbers \(m, n \in \mathbb{N} \), prove that

\[w^m w^n = w^{m+n}. \]

Hint: Use induction on \(n \).

Problem B3 (40 pts). Let \(\Sigma \) be any alphabet. Given a string \(w \in \Sigma^* \), its reversal \(w^R \) is defined inductively as follows: \(\epsilon^R = \epsilon \), and \((ua)^R = au^R \), where \(a \in \Sigma \) and \(u \in \Sigma^* \).

1. Prove that \((uv)^R = v^Ru^R \), for all \(u, v \in \Sigma^* \).
2. Prove that \((w^R)^R = w \), for all \(w \in \Sigma^* \).

TOTAL: 100 points.