Problem B1 (70 pts). Let $\Sigma = \{a_1, \ldots, a_k\}$ be any alphabet. Given a string $w \in \Sigma^*$, its reversal w^R is defined inductively as follows: $\epsilon^R = \epsilon$, and $(ua)^R = au^R$, where $a \in \Sigma$ and $u \in \Sigma^*$.

A palindrome is a string w such that $w = w^R$. Here are some examples of palindromes:

- eye
- racecar
- never odd or even
- god saw I was dog
- campus motto bottoms up mac
- do geese see god

If $k = 1$, every string is a palindrome. Therefore we assume that $k \geq 2$.

We would like to give a formula giving the number p_n of all palindromes w of length $|w| = n \geq 0$ over the alphabet $\Sigma = \{a_1, \ldots, a_k\}$ with k letters.

1. Prove that a palindrome $w \in \Sigma^*$ is either the empty string $w = \epsilon$, or $w = a$ with $a \in \Sigma$, or $w = auua$ where u is a palindrome of length $n - 2$ where $n = |w| \geq 2$ and $a \in \Sigma$ is some letter.

2. Prove that $p_0 = 1$, $p_1 = k$, and

$$p_{n+2} = kp_n, \text{ for all } n \geq 0.$$

Give a formula for p_n. Distinguish between the cases where $n = 2m$ (n is even) and $n = 2m + 1$ (n is odd). You must prove the correctness of your formulae (use induction).

Do not give formulae in terms of $n/2$ when n is even or $(n - 1)/2$ when n odd. Please give formulae for p_{2m} and p_{2m+1} in terms of m.

(3) Prove that the number \(P_n \) of all palindromes \(w \) of length \(\leq n \) (which means that \(0 \leq |w| \leq n \)) over the alphabet \(\Sigma = \{a_1, \ldots, a_k\} \) with \(k \) letters is given by

\[
P_{2m} = \frac{2k^{m+1} - k - 1}{k - 1} \\
P_{2m+1} = \frac{k^{m+2} + k^{m+1} - k - 1}{k - 1}
\]

for any natural number \(m \in \mathbb{N} \). Prove that the number \(Q_n \) of all non-palindromes \(w \) of length \(\leq n \) over the alphabet \(\Sigma = \{a_1, \ldots, a_k\} \) is given by

\[
Q_{2m} = \frac{k^{2m+1} - 2k^{m+1} + k}{k - 1} \\
Q_{2m+1} = \frac{k^{2m+2} - k^{m+2} - k^{m+1} + k}{k - 1}
\]

for any natural number \(m \in \mathbb{N} \).

Hint. Figure out the total number of strings of length \(\leq n \) over an alphabet of size \(k \geq 2 \).

(4) If \(k = 2 \), prove that if \(m \geq 2 \), then \(P_{2m}/Q_{2m} < 1 \) and \(P_{2m+1}/Q_{2m+1} < 1 \), so there are more non-palindromes than palindromes. What is 536 870 909 (in relation to palindromes)? Show that

\[
\frac{536 870 909}{2^{55} - 1} \approx 2^{-26} \approx 1.4901 \times 10^{-8}.
\]

What the interpretation of the above ratio as a probability?

Problem B2 (30 pts). Let \(\Sigma \) be any alphabet. For any string \(w \in \Sigma^* \) recall that \(w^n \) is defined inductively as follows:

\[
w^0 = \epsilon \\
w^{n+1} = w^nw, \quad n \in \mathbb{N}.
\]

Prove the following property: for any two strings \(u, v \in \Sigma^* \), \(uv = vu \) iff there is some \(w \in \Sigma^* \) such that \(u = w^m \) and \(v = w^n \), for some \(m, n \geq 0 \).

Hint. In the “hard” direction, consider the subcases

(1) \(|u| = |v| \),

(2) \(|u| < |v| \) and

(3) \(|u| > |v| \)

and use an induction on \(|u| + |v| \).

TOTAL: 100 points.