“B problems” must be turned in.

Problem B1 (40 pts). The *Fibonacci sequence*, \(u_n \), is given by
\[
 u_0 = 1 \\
 u_1 = 1 \\
 u_{n+2} = u_{n+1} + u_n, \quad n \geq 0.
\]
So, the Fibonacci sequence begins with
1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots

(a) Prove that
\[
 u_n \geq \left(\frac{\sqrt{5} + 1}{2}\right)^{n-1}, \quad n \geq 1.
\]

(b) Prove that the language over \(\{a\} \) given by
\[
 L = \{a^{u_n} \mid n \geq 0\}
\]
is not regular.

Hint. Use (a) and the Myhill-Nerode Theorem.

Problem B2 (120 pts). Which of the following languages are regular? Justify each answer.

1. \(L_1 = \{wcw \mid w \in \{a,b\}^*\} \). (here \(\Sigma = \{a,b,c\} \)).
2. \(L_2 = \{xy \mid x, y \in \{a,b\}^* \text{ and } |x| = |y|\} \). (here \(\Sigma = \{a,b\} \))
3. \(L_3 = \{a^n \mid n \text{ is a prime number}\} \). (here \(\Sigma = \{a\} \)).
4. \(L_4 = \{a^{nm}b^n \mid \gcd(m,n) = 23\} \). (here \(\Sigma = \{a,b\} \)).
(5) Consider the language

\[L_5 = \{ a^{4n+3} \mid 4n + 3 \text{ is prime} \}. \]

Assuming that \(L_5 \) is infinite, prove that \(L_5 \) is not regular.

(6) Let \(F_n = 2^{2^n} + 1 \), for any integer \(n \geq 0 \), and let

\[L_6 = \{ a^{F_n} \mid n \geq 0 \}. \]

Here \(\Sigma = \{ a \} \).

Extra Credit (from 10 up to 100 pts). Find explicitly what \(F_0, F_1, F_2, F_3 \) are, and check that they are prime. What about \(F_4 \)?

Is the language

\[L_7 = \{ a^{F_n} \mid n \geq 0, \ F_n \text{ is prime} \} \]

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form \(4n + 3 \).

The list of such primes begins with

\[3, 7, 11, 19, 23, 31, 43, \cdots \]

Say we already have \(n + 1 \) of these primes, denoted by

\[3, p_1, p_2, \cdots, p_n, \]

where \(p_i > 3 \). Consider the number

\[m = 4p_1p_2\cdots p_n + 3. \]

If \(m = q_1 \cdots q_k \) is a prime factorization of \(m \), prove that \(q_j > 3 \) for \(j = 1, \ldots, k \) and that no \(q_j \) is equal to any of the \(p_i \)'s. Prove that one of the \(q_j \)'s must be of the form \(4n + 3 \), which shows that there is a prime of the form \(4n + 3 \) greater than any of the previous primes of the same form.

Problem B3 (80 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a deterministic finite automaton. Recall that state equivalence is the equivalence relation \(\equiv \) on \(Q \), defined such that,

\[p \equiv q \iff \forall z \in \Sigma^* (\delta^*(p, z) \in F \iff \delta^*(q, z) \in F), \]

and that \(i\text{-equivalence} \) is the equivalence relation \(\equiv_i \) on \(Q \), defined such that,

\[p \equiv_i q \iff \forall z \in \Sigma^*, \ |z| \leq i (\delta^*(p, z) \in F \iff \delta^*(q, z) \in F). \]
A relation \(S \subseteq Q \times Q \) is a \textit{forward closure} iff it is an equivalence relation and whenever \((p, q) \in S\), then \((\delta(p, a), \delta(q, a)) \in S\), for all \(a \in \Sigma\).

We say that a forward closure \(S \) is \textit{good} iff whenever \((p, q) \in S\), then \(\text{good}(p, q)\), where \(\text{good}(p, q)\) holds iff either both \(p, q \in F\), or both \(p, q \notin F\).

Given any relation \(R \subseteq Q \times Q \), recall that the smallest equivalence relation \(R \approx \) containing \(R \) is the relation \((R \cup R^{-1})^*\) (where \(R^{-1} = \{(q, p) \mid (p, q) \in R\}\), and \((R \cup R^{-1})^*\) is the reflexive and transitive closure of \((R \cup R^{-1})\)). We define the sequence of relations \(R_i \subseteq Q \times Q \) as follows:

\[
R_0 = R \approx \\
R_{i+1} = (R_i \cup \{(\delta(p, a), \delta(q, a)) \mid (p, q) \in R_i, \ a \in \Sigma\})^*.
\]

(1) Prove that \(R_{i_0+1} = R_{i_0} \) for some least \(i_0 \). Prove that \(R_{i_0} \) is the smallest forward closure containing \(R \).

\textit{Hint.} First, prove that
\[
R_i \subseteq R_{i+1}
\]
for all \(i \geq 0\). Next, prove that \(R_{i_0} \) is forward closed.

If \(\sim \) is any forward closure containing \(R \), prove by induction that
\[
R_i \subseteq \sim
\]
for all \(i \geq 0\).

We denote the smallest forward closure \(R_{i_0} \) containing \(R \) as \(R^\dagger \), and call it the \textit{forward closure of} \(R \).

(2) Prove that \(p \equiv q \) iff the forward closure \(R^\dagger \) of the relation \(R = \{(p, q)\} \) is good.

\textit{Hint.} First, prove that if \(R^\dagger \) is good, then
\[
R^\dagger \subseteq \equiv .
\]

For this, prove by induction that
\[
R^\dagger \subseteq \equiv_i
\]
for all \(i \geq 0\).

Then, prove that if \(p \equiv q \), then
\[
R^\dagger \subseteq \equiv .
\]

For this, prove that \(\equiv \) is an equivalence relation containing \(R = \{(p, q)\} \) and that \(\equiv \) is forward closed.

\textbf{TOTAL: 240 + 30+ points}