Problem B1 (40 pts). Give a context-free grammar for the language over the alphabet \{a, b, c\} given by
\[L = \{ xcy \mid x \neq y, x, y \in \{a, b\}^* \}. \]

Hint. At first glance, this seems impossible. Think nondeterministically. You need to figure out how to express that \(x \neq y \) in such a way that you can write grammar rules that enforce this condition. Obviously, this is the case if \(|x| < |y|\) or \(|y| < |x|\). Another possibility is that \(x \) and \(y \) differ by some symbol in the same position (scanning from left to right).

If you do it “right,” your choice of productions should yield a justification of the correctness of your grammar.

Problem B2 (10 pts). Prove that the extended pairing function \langle x_1, \ldots, x_n \rangle_n \text{ defined in the notes (see Section 2.1 of the notes, page 44) satisfies the equation} \[
\langle x_1, \ldots, x_n, x_{n+1} \rangle_{n+1} = \langle x_1, \langle x_2, \ldots, x_{n+1} \rangle_n \rangle.
\]

Compute \langle 2, 5, 7, 17 \rangle_4 (this integer has 10 digits).

Problem B3 (30 pts). Prove that the function, \(f: \Sigma^* \rightarrow \Sigma^* \), given by
\[f(w) = www \]
is RAM computable by constructing a RAM program (\(\Sigma = \{a, b\} \)).

Problem B4 (30 pts). Give context-free grammars for the following languages:

(a) \(L_5 = \{ wcw^R \mid w \in \{a, b\}^* \} \) (\(w^R \) denotes the reversal of \(w \))

(b) \(L_6 = \{ a^m b^n \mid 1 \leq m \leq n \leq 2m \} \)

(c) \(L_8 = \{ xcy \mid |x| = 2|y|, x, y \in \{a, b\}^* \} \)

In each case, give a (very) brief justification of the fact that your grammar generates the desired language.
Problem B5 (60 pts). Given a context-free language L and a regular language R, prove that $L \cap R$ is context-free.

Do not use PDA’s to solve this problem!

Use the following method. Without loss of generality, assume that $L = L(G)$, where $G = (V, \Sigma, P, S)$ is in Chomsky normal form, and let $R = L(D)$, for some DFA $D = (Q, \Sigma, \delta, q_0, F)$. Use a kind of cross-product construction as described below. Construct a CFG G_2 whose set of nonterminals is $Q \times N \times Q \cup \{S_0\}$, where S_0 is a new nonterminal, and whose productions are of the form:

$$S_0 \rightarrow (q_0, S, f),$$

for every $f \in F$;

$$(p, A, \delta(p, a)) \rightarrow a \iff (A \rightarrow a) \in P,$$

for all $a \in \Sigma$, all $A \in N$, and all $p \in Q$;

$$(p, A, s) \rightarrow (p, B, q)(q, C, s) \iff (A \rightarrow BC) \in P,$$

for all $p, q, s \in Q$ and all $A, B, C \in N$;

$$S_0 \rightarrow \epsilon \iff (S \rightarrow \epsilon) \in P \text{ and } q_0 \in F.$$

Prove that for all $p, q \in Q$, all $A \in N$, all $w \in \Sigma^+$, and all $n \geq 1$,

$$
(p, A, q) \xrightarrow{n \text{ im } G_2} w \iff A \xrightarrow{n \text{ im } G} w \text{ and } \delta^*(p, w) = q.
$$

Conclude that $L(G_2) = L \cap R$.

Problem B6 (50 pts). Given an undirected graph $G = (V, E)$ and a set $C = \{c_1, \ldots, c_p\}$ of p colors, a coloring of G is an assignment of a color from C to each node in V such that no two adjacent nodes share the same color, or more precisely such that for every edge $\{u, v\} \in E$, the nodes u and v are assigned different colors. A k-coloring of a graph G is a coloring using at most k-distinct colors. For example, the graph shown in Figure 1 has a 3-coloring (using green, blue, red).

The **graph coloring problem** is to decide whether a graph G is k-colorable for a given integer $k \geq 1$.

(1) Give a polynomial reduction from the graph 3-coloring problem to the 3-satisfiability problem for propositions in CNF.

If $|V| = n$, create $n \times 3$ propositional variables x_{ij} with the intended meaning that x_{ij} is true iff node v_i is colored with color j. You need to write sets of clauses to assert the following facts:

1. Every node is colored.
2. No two distinct colors are assigned to the same node.

3. For every edge \(\{v_i, v_j\} \), nodes \(v_i \) and \(v_j \) cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color using a proposition in disjunctive normal form, but this is not a correct answer; we want a proposition in conjunctive normal form.

(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff it is bipartite, but do not use this fact to solve B3(2). Only use material covered in the notes for CIS262.

The problem of 3-coloring is actually \(\mathcal{NP} \)-complete, but this is a bit tricky to prove.

Problem B7 (60 pts). Let \(A \) be any \(p \times q \) matrix with integer coefficients and let \(b \in \mathbb{Z}^p \) be any vector with integer coefficients. The 0-1 integer programming problem is to find whether
a system of p linear equations in q variables

$$a_{11}x_1 + \cdots + a_{1q}x_q = b_1$$

$$\vdots \quad \vdots$$

$$a_{i1}x_1 + \cdots + a_{iq}x_q = b_i$$

$$\vdots \quad \vdots$$

$$a_{p1}x_1 + \cdots + a_{pq}x_q = b_p$$

with $a_{ij}, b_i \in \mathbb{Z}$ has any solution $x \in \{0, 1\}^q$, that is, with $x_i \in \{0, 1\}$. In matrix form, if we let

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1q} \\ \vdots & \ddots & \vdots \\ a_{p1} & \cdots & a_{pq} \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_q \end{pmatrix},$$

then we write the above system as

$$Ax = b.$$

(i) Prove that the 0-1 integer programming problem is in \mathcal{NP}.

(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of A are 0 or 1 and all entries in b are equal to 1 is \mathcal{NP}-complete by providing a polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any other problem to the 0-1 integer programming problem.

Hint. Given a tiling problem, $((T, V, H), \hat{s}, \sigma_0)$, create a 0-1-valued variable, x_{mnt}, such that $x_{mnt} = 1$ iff tile t occurs in position (m, n) in some tiling. Write equations or inequalities expressing that a tiling exists and then use “slack variables” to convert inequalities to equations. For example, to express the fact that every position is tiled by a single tile, use the equation

$$\sum_{t \in T} x_{mnt} = 1,$$

for all m, n with $1 \leq m \leq 2s$ and $1 \leq n \leq s$. Also, if you have an inequality such as

$$2x_1 + 3x_2 - x_3 \leq 5$$ \hspace{1cm} (*)

with $x_1, x_2, x_3 \in \mathbb{Z}$, then using a new variable y_1 taking its values in \mathbb{N}, that is, nonnegative values, we obtain the equation

$$2x_1 + 3x_2 - x_3 + y_1 = 5,$$ \hspace{1cm} (**)

and the inequality (*) has solutions with $x_1, x_2, x_3 \in \mathbb{Z}$ iff the equation (**) has a solution with $x_1, x_2, x_3 \in \mathbb{Z}$ and $y_1 \in \mathbb{N}$. The variable y_1 is called a slack variable (this terminology
comes from optimization theory, more specifically, linear programming). For the 0-1-integer programming problem, all variables, including the slack variables, take values in \{0, 1\}.

Conclude that the 0-1 integer programming problem is \(\mathcal{NP}\)-complete.

TOTAL: 280 points.