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The Assignment Problem

In this class we will be concerned with computationally efficient problem solving. One of the most
important ideas in theoretical computer science—obvious once you get used it it, but surprisingly under-
appreciated in many other fields—is the distinction between the class of problems and the solution to
those problems. A class of problems—and what constitutes a solution—should be defined independently
of the method of solving it. A single problem may have multiple methods of solution—i.e. algorithms—
that we can evaluate along different axes, such as running time, the degree of approximation of the
solution, and others. In this lecture we’ll give a simple example of class of problems, and an intuitive
algorithm for solving them, that will get us used to algorithm analysis. Later in the class we will learn
another method for solving the same problem that we will be able to compare with in retrospect.

Here is the abstract class of problems we will study:

Definition 1 An instance of a bipartite matching problem is given by a set of n left hand vertices L, a
set of m right hand vertices R, and a weight function w : L×R→ R≥0, specifying a weight w(u, v) for
each pair of vertices u ∈ L and v ∈ R.

Think of w(u, v) as representing the value or cost that will result from pairing u and v. For example, we
might imagine that L corresponds to a set of students, and R corresponds to a set of dorm rooms, where
w(u, v) represents how happy student u will be if assigned to room v. We will wish to assign students
to rooms to maximize value.

Implicit in this discussion is that we will somehow be matching or assigning elements of L to elements
of R. This is formalized below:

Definition 2 A matching is a mapping µ : L→ R∪ ∅ such that each vertex in L is matched to at most
one vertex in R, and no vertex in R is matched to more than one vertex in L. In other words, for every
v ∈ R, and for every u, u′ ∈ L, µ(u) = v ⇒ µ(u′) 6= v.

Here, µ(u) = v “means” that u is matched to v, and µ(u) = ∅ “means” that u is unmatched.

A matching µ is a feasible solution to a bipartite matching problem. We can evaluate the quality of
a solution by the weight of a matching, which we want to maximize. Here, we will interpret unmatched
vertices in L as contributing nothing to the weight of the matching: w(u, ∅) = 0 for all u ∈ L.

Definition 3 Given an instance (L,R,w) of a bipartite matching problem and a matching µ, the weight
of the matching is given as:

w(µ) =
∑
u∈L

w(u, µ(u))

The weight of the optimal matching is defined as:

OPT = max
µ

w(µ)

where the maximum is taken over the set of all matchings.

An algorithm for the bipartite matching problem will take as input an instance (L,R,w) of the bipartite
matching problem and output a matching µ. We will evaluate algorithms based on things like their
running time and on the quality of the solution that they output. Algorithms that always output
matchings µ such that w(µ) = OPT will be called exact algorithms for the bipartite matching problem,
but algorithms that can guarantee approximately optimal solutions can also be interesting if e.g. they
have running time advantages.

Finally, we introduce an important special case of the bipartite matching problem that corresponds
to binary weights:
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Definition 4 An instance (L,R,w) of the bipartite matching problem is unweighted if for all u ∈ L, v ∈
R, w(u, v) ∈ {0, 1}.

An unweighted matching problem corresponds to a setting in which certain matches are either feasible
or not. Here OPT simply counts the maximum number of simultaneous feasible matches, which we want
to maximize.

We’ll now see an algorithm for finding approximately optimal bipartite matchings, that we can also
use to compute exactly optimal matchings in unweighted matching problems. The algorithm itself will
use a fiction of “prices”, and will be very intuitive — but of course the problem itself — and hence
the solution do not in fact make any reference to money. But to think about the algorithm, imagine
that we are auctioning off the dorm rooms (vertices in R) to the students (vertices in L). Initially, all
of the students begin unmatched, and the prices of the dorm rooms start at 0. In turns, unmatched
students “bid” on their most preferred dorm room given the prices. The most recent bidder is the current
(tentative) winner of the auction, and is (tentatively) matched to the room they bid on. If they are
outbid, they go back to being unmatched. The algorithm halts when either there are no more unmatched
students, or when none of the unmatched students are willing to bid on any of the rooms (because they
are all too expensive). The algorithm has a parameter ε which is the “bid increment” — i.e. how much
the price of a room rises each time there is a new winning bidder. This algorithm should remind you of
the deferred acceptance algorithm for stable matchings you learned about in CIS 121.

Algorithm 1 The Ascending Price Auction with increment ε.

For all v ∈ R, set pv = 0. For all u ∈ L, set µ(u) = ∅.
while There exist any unmatched students do

for Each unmatched student u do
u “bids” on v∗ = arg maxv(w(u, v) − pv) if w(u, v∗) − pv∗ ≥ ε. Otherwise, bidder u drops out.
(and is “matched” to nothing):
u′ = µ−1(v∗) is now unmatched: µ(u′) = ∅. Set µ(u)← v∗

pv∗ ← pv∗ + ε
end for

end while
Output µ.

The first thing that we should prove about Algorithm 1 is that it is indeed an algorithm, meaning that
it always halts and outputs something. Fixing an instance of a bipartite matching problem (L,R,w),
we will write W = maxu∈L,v∈R w(u, v) to denote the largest weight in the instance. Note that for
unweighted instances, by definition W ≤ 1.

Lemma 5 On any instance (L,R,w), Algorithm 1 with parameter ε halts and outputs a matching after
at most T steps for:

T ≤ nW

ε

Proof We analyze the vector of “prices”. Firt we claim that we always have that
∑
v∈R pv ≤ n ·W .

To see this, note that once a vertex v ∈ R becomes matched over the course of the algorithm, it never
becomes unmatched (unlike vertices u ∈ L). Thus unmatched vertices v ∈ V have price pv = 0. It is
also the case that for every v, pv ≤W . This is because the “bidders” u ∈ L only bid on items with price
pv < w(u, v) − ε ≤ W − ε, and thus after the final bid on any item, its price is at most W . There can
be at most n matched vertices v ∈ R, because each is matched to a unique u ∈ L, and |L| = n. This
completes the first claim. Now, it suffices to observe that

∑
v∈R pv increments by exactly ε with every

iteration of the algorithm, by construction. Since the vector of prices is initialized at 0, the result is that
there can be at most T ≤ nW

ε iterations before we would have
∑
v∈R pv > n ·W , a contradiction to our

initial claim.
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So we know that Algorithm 1 at least outputs some matching µ. Now we need to argue that µ has
high weight. To do this, we will again use the fictional prices p computed by the algorithm.

Definition 6 A matching µ paired with a set of prices p jointly satisfy the ε-approximate market clearing
conditions if:

1. For any unmatched vertex v ∈ R, pv = 0. (Unmatched goods have price 0)

2. For any vertex u ∈ L, w(u, µ(u)) − pµ(u) ≥ arg maxv∈R∪{∅} w(u, v) − p(v) − ε (Each student is
obtaining their ε-most preferred room given the prices).

Lemma 7 Consider the matching µ output by Algorithm 1, together with the vector of prices p at the
time that the algorithm halts. µ and p jointly satisfy the ε-aprpoximate market clearing conditions.

Proof To verify the first condition, observe that once a vertex v ∈ R becomes matched, it never
becomes unmatched. Therefore if v is unmatched in the final output, it must never have received a
“bid” and hence its price was never incremented from its initialization of pv = 0.

To verify the second condition, note that if µ(u) = v, then u was the last bidder to bid on v by
construction. At the time that u bid on v, we had by construction that v = arg maxv(w(u, v) − pv).
Immediately afterwards, pv was incremented by ε, and so we had that v ≥ maxv(w(u, v)− pv)− ε. Since
pv was not further modified (since there were no future bidders) and other prices are non-decreasing,
this condition must also hold for the final output.

Lemma 8 Any matching µ that can be paired with prices p that satisfy the ε-approximate market clearing
condition must satisfy:

n∑
i=1

w(u, µ(u)) ≥ OPT− εn

Proof Let µ∗ be the optimal matching satisfying w(µ∗) = OPT. We will compare µ to µ∗. We know
from the 2nd market clearing condition that for every u ∈ L we have:

w(u, µ(u))− pµ(u) ≥ w(u, µ∗(u))− pµ∗(u) − ε.

Summing this condition over each u ∈ L (with the convention that p∅ = 0) we get:∑
u∈L

w(u, µ(u))−
∑
u∈L

pµ(u) ≥
∑
u∈L

w(u, µ∗(u))−
∑
u∈L

pµ∗(u) − εn = OPT−
∑
u∈L

pµ∗(u) − εn

Grouping the terms representing prices, we have:

∑
u∈L

w(u, µ(u)) ≥ OPT− εn+

(∑
u∈L

pµ(u) −
∑
u∈L

pµ∗(u)

)

But observe that by the first market clearing condition,
∑
u∈L pµ(u) =

∑
v∈R pv (because terms not

appearing in the first sum take value 0). Hence(∑
u∈L

pµ(u) −
∑
u∈L

pµ∗(u)

)
≥ 0

which completes the proof.

All together, we have proven the following theorem:
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Theorem 9 On any instance (L,R,w) of the bipartite matching problem, after T ≤ nW
ε iterations,

Algorithm 1 outputs a matching µ such that:

w(µ) ≥ OPT− εn

Note that this algorithm has a parameter ε that lets us trade off its running time with the accuracy of
its solution, but it never seems to promise us an exactly optimal solution. However, lets consider the
implications of this theorem in the special case of unweighted bipartite matching problems. We recall
that in this case, W ≤ 1. However note also that in this case, for any matching µ, w(µ) is integer valued
and OPT ≤ n. Hence, if we take ε < 1/n, then the above theorem gives us that w(µ) ≥ OPT − c for
some c < 1, which by the integrality condition on w(µ) means that w(µ) = OPT! We thus have the
following theorem for unweighted matching problems:

Theorem 10 On any instance (L,R,w) of the unweighted bipartite matching problem, if we set ε = n
n2+1

after T ≤ n2 + 1 iterations, Algorithm 1 outputs a matching µ such that:

w(µ) = OPT

.
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