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Sorting

In this lecture, we’ll recall a classic problem that you will have seen before: sorting. The task is simple
and ubiquitious: given an array of numbers, permute the array so that the numbers are in ascending
(or descending) order. We can define the problem formally as follows. Below we write [n] to denote
[n] = {1, . . . , n}, A[i] to denote the i’th entry of a matrix A, with indexing starting at 1, and A[i, . . . , j]
to denote the subarray from entries i to j (inclusive).

Definition 1 An instance of the sorting problem is given by an array A of n numbers such that for
i ∈ [n], A[i] ∈ R. The goal is to return an array B that is a permutation of A in ascending order. That
is, we want that:

1. There exists a permutation π : [n]→ [n] such that for each i ∈ [n], B[i] = A[π(i)]

2. For each i ∈ [n− 1]: B[i] ≤ B[i+ 1]

Suppose that we start with B = A. A simple operation that we might perform is a swap, that
simply swaps the elements in the i’th and j’th entry of B. We will write this operation as swap(B, i, j).
If we design algorithms such that we only modify B by performing swap operations, then we will be
guaranteed that B remains a permutation of A, and we will only need to worry about proving that our
algorithms result in B being output in ascending order. We will imagine that we can perform a swap
operation in constant time (in other words, the amount of time it takes us to perform swap(B, i, j) is
independent of n, the length of the array, which is a good model of reality at least for arrays that can
fit in memory). Another operation that will be useful is finding the minimum element in some subarray
B[t+ 1, n].

Algorithm 1 FindMinIndex(B[t+1,n])

Let MinIndex = t+ 1.
for i = t+ 2 to n do

if B[i] < B[MinIndex] then
MinIndex = i.

end if
end for
Return MinIndex

It should be easy to convince yourself of the following claim:

Claim 2 FindMinIndex(B[t+ 1, n]) runs in time O(n− t) and returns an index t+ 1 ≤ MinIndex ≤ n
such that for all t+ 1 ≤ i ≤ n: B[MinIndex] ≤ B[i].

Proof It might be a helpful refresher on the principles of proof by induction to give a short proof of
this.

We can now combine these two operations to derive a simple sorting algorithm, Selection Sort.
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Algorithm 3 Selection Sort

Let B = A
for t = 1 to n− 1 do

Let j = FindMinIndex(B[t+ 1, n).
if B[j] < B[t] then

Swap(B, t, j).
end if

end for
Return B.

The run time for Selection sort is easy to analyze:

Theorem 3 Selection Sort runs in time O(n2).

Proof We iterate t from 1 to n− 1: in each iteration, we might conduct a Swap (constant time) and
run FindMinIndex[B[t+1,n]), which by Claim 2 takes time O(n− t). In all, the running time is:

O

(
n−1∑
t=1

n− t

)
= O

(
n−1∑
t=1

t

)
= O(n2)

Now, can we prove that Selection “sort” deserves the name?

Theorem 4 Selection Sort solves the sorting problem — i.e. for any A, it returns an array B that is a
permutation of A in ascending order.

Proof As we have observed, because Selection Sort only modifies the original ordering via the Swap
operation, it is guaranteed to return a permutation of A — so it remains to prove that at completion,
B is in ascending order. We prove this by induction on t. Our inductive hypothesis is that after the
completion of iteration t, two things are true:

1. The sub-matrix B[1, . . . , t] is in ascending order, and

2. The entries before t are all less than the entries after t: for all i ≤ t and for all j > t, B[i] ≤ B[j].

We can establish the base case at t = 1: After iteration 1, we have that B[1] contains a minimum value
element in B, which satisfies both claims. To see this observe that j is the index of the minimum value
in B[2, . . . , n] which we swap with the first element in the event that B[j] < B[1].

To prove the inductive case, note that at the start of round t + 1, we have that B[j] ≤ B[j′] for all
j′ ≥ t + 2 by the guarantee of FindMinIndex, and that B[j] ≥ B[t] by the 2nd part of the inductive
hypothesis. By the first part of the inductive hypothesis, B[1, . . . , t] is in sorted order, and in particular
B[j] ≥ B[i] for all i ≤ t. Thus when we perform Swap(B, t + 1, j) we obtain that B[1, . . . , t + 1] is in
sorted order, and that for all i ≤ t+ 1 and all j′ > t+ 1, B[i] ≤ B[j′], establishing the inductive case.

Thus we have that t round t = n, by the first part of the inductive claim, that B is in ascending
order.

Huzzah, we have a solution to the sorting problem! Can we do better? Perhaps we can improve on
the O(n2) running time to get an algorithm that runs in time O(n)? To answer this question we need
to be more precise about what a “solution” can do.

Selection sort inspects the input data using only a single operation: a comparison (i.e. its branching
condition is of the form “If B[j] ≤ B[t] then...). It is the result of these comparisons (and nothing else)
that determines which swaps are performed, which comparisons are performed next, and ultimately
which permutation π of the input array A is finally output. That is to say, Selection Sort operates in
the comparison based model of computation:
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Definition 5 (Comparison Model) An algorithm operates in the Comparison Model if it can be writ-
ten as a binary decision tree in which:

1. Each vertex is labelled with a fixed comparison (i.e. B[i] < B[j] for particular i, j)

2. Computation proceeds as a root-leaf path down the tree, branching left if the comparison evaluates
to TRUE and right otherwise, and

3. The leaves are labelled with the output of the algorithm (in this case, permutations)

In this model, the running time of the algorithm corresponds to the depth of the tree.

As it turns out, we can prove an easy lower bound for sorting algorithms in the comparison model.
Lower bounds of this sort serve as a guide: either we should not waste effort trying to derive algorithms
that improve on the lower bound, or, we should find techniques that step outside of the model in which
the lower bound is proven.

Theorem 6 Any algorithm that solves the sorting problem int he comparison model must have run time
at least Ω(n log n).

Proof The proof is a simple counting argument. An algorithm that solves the sorting problem must
output an array B in sorted order for any input A. Since A can be an arbitrary permutation of B, this
requires that each permutation π is output by the algorithm on some input A. In the comparison based
model, this means the decision tree must have at least one leaf for each permutation π: There are n!
such permutations, so we must have at least L > n! leaves.

On the other hand, a binary tree of depth d has L ≤ 2d many leaves. Here d is the running time of
our algorithm, and so combining these two bounds, we have that:

2d ≥ n!

taking the log of both sides, we have:

d ≥ log(n!) = Ω(n log n).
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