
CIS 320: Algorithms September 13, 2021

Lecture 4
Lecturer: Aaron Roth Scribe: Aaron Roth

Divide and Conquer: Merge and Quick Sorts

In this lecture we’ll give a sorting algorithm with running time that matches the Ω(n log n) lower bound
we proved for sorting algorithms in the comparison model in the last class. Our goal here is not just
to understand sorting, but to see an example of a more general algorithmic paradigm called divide and
conquer. The idea (at a high level) is to solve a problem by splitting it into two smaller problems,
solving the smaller problems, and then combining the solution. Along the way, we’ll get practice solving
recurrence relations, another useful trick.

The main observation behind merge sort is that if we have two arrays A and B of length t that are
already in sorted order, then we can merge them into a single array C also in sorted order in O(t) time,
using the following merge operation. In practice you would want to perform the merge in place — i.e.
without having to allocate another array C, but our goal here is clarity rather than memory efficiency.

Algorithm 1 Merge(A, B)

Let `A = length(A), `B = length(B), C be an array of length `A + `B .
Let pA = 1, pB = 1, pC = 1.
while pC ≤ `A + `B do
if pA > `A or A[pA] > B[pB ] then
C[pC ] = B[pB ]
pC+ = 1, pB+ = 1

else if pB > `B or A[pA] ≤ B[pB ] then
C[pC ] = A[pA]
pC+ = 1, pA+ = 1

end if
end while
Return C

Claim 1 Given arrays A and B of length `A and `B respectively, both in ascending order, Merge(A,B)
runs in time O(`A + `B) and returns an array C containing the concatenation of A and B sorted in
ascending order.

Proof Prove this for yourself as an exercise if you want to practice your induction skills.

The Merge operation tells us that if we have two halves of our array that are each already in sorted
order, then with O(n) additional work, we can combine them to get our array in completely sorted order.
This suggests a natural idea for sorting:

1. Split our array into two parts;

2. Sort each part, and;

3. Merge the two parts.

Of course, step 2 is “Sort each part” — seemingly the exact problem we are trying to find a solution
for! But we can recurse and solve these sub-problems the same way, observing that eventually, when
we get down to an array of size 1, it will already be sorted without us having to do any additional
work. In the following, we will assume for simplicity that n is a power of 2, but you should be able
to convince yourself that handling the case in which n is not a power of 2 is simple and can be done
without asymptotically affecting the analysis of our algorithm.

4-1



Algorithm 2 MergeSort(A)

Let ` = length(A)
if ` = 1 then
Return A

else
Let A1 = A[1, . . . , `/2] and A2 = A[`/2 + 1, `]
Let B = MergeSort(A1) and Let C = MergeSort(A2)
Return Merge(B,C).

end if

Theorem 2 MergeSort(A) halts and returns an array sorted in ascending order.

Proof We first observe that MergeSort halts: Recall that we have assumed that n is a power of 2, and
hence at every call of MergeSort, `/2 is an integer. Hence each recursive call to MergeSort is well defined
and applied to a matrix of strictly smaller length, and bottoms out at ` = 1, which returns immediately.
Hence all calls return.

We can prove correctness by induction on `. The base case is when ` = 1: in this case, A is by
definition in sorted order, and MergeSort correctly returns A.

For the inductive case, we assume that the inductive hypothesis holds for arrays of length `, and
conclude that it also holds for arrays of length 2`. If A is of length 2`, then A1 and A2 are both of length
`, and so by the inductive assumption, B and C are permutations of A1 and A2 in sorted order. Thus,
by Claim 1, our returned value Merge(B,C) is a permutation of A in sorted order.

We now analyze the running time of MergeSort. It is a recursive algorithm (i.e. it makes calls to
itself on smaller instances), and so it is natural to write down a recursive equation for its running time.
Lets let T (n) denote the running time of MergeSort on an input of length n. MergeSort does two things
of note: It makes two recursive calls on instances of length n/2, and it performs the Merge operation,
which by Claim 1 takes time O(n). Hence, for some constant c, we can conclude:

T (n) ≤ 2T (n/2) + cn

We need to solve for T (n). It turns out that if we have a good guess, then establishing the guess as
correct is a simple exercise in induction:

Theorem 3 MergeSort runs in time O(n log n).

Proof We prove this by induction: Our inductive hypothesis is that for an input of size ` ≥ 2, there
is a constant c such that T (`) ≤ c` log `. In the base case when ` = 2, MergeSort returns in constant
time, and so this is satisfied. In the inductive case, we assume this to be true for inputs of size ` and
show that it is true for inputs of size 2`. Using our recursive bound on the running time of MergeSort
and substituting in for our inductive assumption, we get:

T (2`) ≤ 2T (`) + 2c`

≤ 2c` log ` + 2c` log 2

= 2c`(log ` + log 2)

= c(2`) log(2`)

which completes the proof.

How would you come up with such a guess in the first place, to plug into the induction? Its helpful
to draw out the recursion as a tree, and count the running time per level of the tree, as well as the depth
of the tree. We drew out a tree like this in class.

4-2



Lets do one more — Quick Sort! This will also be a comparison based sorting method, so we know
from our lower bound that it cannot beat MergeSort’s asymptotics. But it can be implemented very
efficiently; for our purposes, we’ll be interested in it because it is a randomized algorithm.

Like MergeSort, QuickSort is a recursive algorithm based on a divide and conquer methodology. But
instead of Merge, the base operation will be Partition: Given a pivot element z, we will divide an array
A into two arrays B and C such that every entry of B is less than z, and every entry of C is greater
than z. Once again we will prioritize clarity over efficiency of the details of implementation (so we will
not sort in place, as you would want to in practice).

Algorithm 3 Partition(A, z)

Let ` = Length(A) and initialize new arrays B and C.
Initialize indices pB = 1, pC = 1.
for pA = 1 to ` do
if A[pA] ≤ z then

B[pB + +] = A[pA]
else
C[pC + +] = A[pA]

end if
end for
Return B,C

Claim 4 Partition(A, z) runs in time O(`) on an input A of length `, and outputs a pair of arrays B,C
such that B[i] ≤ z for all i ≤ Length(B) and C[i] > z for all i ≤ Length(C).

Proof Left as an exercise.

The idea behind quick sort will be to pick a pivot element z at random, then to partition A around
z, and recursively call QuickSort on B and C.

Algorithm 4 QuickSort(A)

Let ` = Length(A)
Pick i ∈ {1, . . . , `} uniformly at random and let z = A[i].
Let A−i = A[1, . . . , i− 1] ◦A[i + 1, . . . `]
Let (B,C) = Partition(A−i, z)
Let Bs = QuickSort(B), Cs = QuickSort(C).
Return Bs ◦ z ◦ Cs

Theorem 5 QuickSort(A) returns a permutation of A in sorted order.

Proof We prove this by induction on `. In the base case ` = 1, QuickSort returns z = A, which is in
sorted order by definition. In the inductive case, we have that Bs and Cs are in sorted order. We also
have from Claim 4 that for all i, j: Bs[i] ≤ z ≤ Cs[j]. Thus Bs ◦ z ◦ Cs is also in sorted order.

It remains to analyze the running time of QuickSort. Note that since we pick the pivot element z at
random, we need to analyze the expected running time. We observe the running time of the algorithm is
dominated by the for loop in Partition, each iteration of which performs a comparison. Hence to bound
the running time asymptotically, it suffices to bound the number of comparisons made in total.

Theorem 6 QuickSort has expected running time O(n log n) when run on an input A of length n.

4-3



Proof We will count the expected number of comparisons that QuickSort makes over the run of the
algorithm — each of which occurs within a call to Partition. Observe that recursive calls are made on
disjoint parts of the array, so elements are compared at most one time.

Let As denote A in sorted order. Let Xi,j denote the indicator that As[i] is compared to As[j] at
some point during the run of the algorithm. Since elements are compared at most one time, this means
we can bound the total number of comparisons X in expectation as

E[X] = E

n−1∑
i=1

n∑
j=i+1

Xi,j


=

n−1∑
i=1

n∑
j=i+1

E[Xi,j ]

where the second equality follows by linearity of expectation. Thus we can focus on the term E[Xi,j ].
To analyze this, observe that if some point z = As[k], where i < k < j is chosen as a pivot before

either i or j are chosen, then As[i] and As[j] will never be compared to one another, because they will be
separated into disjoint arrays after each is compared to z. Hence, i and j will be compared to one another
only if either As[i] or As[j] are the first elements to be chosen as pivots amongst the set As[i, . . . , j].
Because we choose pivots uniformly at random, and there are j−i+1 elements in As[i, . . . , j], the chance
that the first one chosen is in the set {As[i], As[j]} is:

E[Xi,j ] =
2

j − i + 1
.

Thus the expected number of comparisons, and hence the expected running time can be bounded as:

E[X] =

n−1∑
i=1

n∑
j=i+1

E[Xi,j ]

=

n−1∑
i=1

n∑
j=i+1

2

j − i + 1

=

n−1∑
i=1

n−i∑
k=1

2

k + 1

≤
n−1∑
i=1

n∑
k=1

2

k

= 2 ·
n−1∑
i=1

Hn

= O(n log n)

Here, Hn =
∑n

k=1
1
k = O(log n) is the n’th Harmonic number.

4-4


