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Dynamic Programming I: Weighted Interval Scheduling

So far we’ve been lucky in our “divide-and-conquer” examples. This was manifested in part by how
easy it was to choose sub-problems to divide our initial problem into. By and large, we always wanted
to divide our problem in half if we could, and didn’t have to agonize over whether there might be
better splits. We were also able to just solve the recurrences we came up with, and we ended up with
fast algorithms! But sometimes things don’t work out like that: its not obvious how to break up our
problem, and even if we do come up with a recursive algorithm, its straightforward implementation still
runs in exponential time. Today we’ll begin studying a more powerful version of “divide an conquer”
called “dynamic programming”, that can be used when it is not obvious which sub-problems to divide
our problem into. The more powerful approach will also have the potential to have more dramatic
improvements in running time over the naive solution. And yet the basic premise is very simple: we
start by identifying structure that lets us write down a recursive solution to our problem. The naively
implemented recursive solution may actually have exponential running time, but what we are looking
for is wastefulness in the naive recursion: if it turns out that the same sub-problem is solved many
different times, we can simply cache the solution, and re-use it in the recursion without needing to
recompute it. The result is running time scaling with the number of distinct sub-problems needed in
the recursion, not the total size of the recursive tree. Before going on, we should acknowledge that
the technique we are about to learn has two different names, depending on the implementation details:
“dynamic programing” and “memoization”. Both names are terrible, so ignore them for now. What
we will be doing is implementing a recursive algorithm while caching previously solved sub-problems
(“memoization”), and then simply unrolling the recursion to solve the sub-problems in a bottom up
manner (“bottom up dynamic programming”).

We’ll give our first example with the problem of “weighted interval scheduling”:

Definition 1 An instance of the weighted interval scheduling problem is given by a collection I =
{w(i), s(i), f(i)}ni=1 of n jobs (w(i), s(i), f(i)). Each job has a real valued weight w(i), start time s(i),
and finish time f(i). Think of a job as representing an interval of utilization of some resource spanning
[s(i), f(i)]

A feasible solution to the weighted interval scheduling problem is a subset S ⊆ [n] of jobs such that
for each i ∈ S, the intervals [s(i), f(i)] are non-overlapping. The weight of a solution S is w(S) =∑

i∈S w(i). The goal of the weighted interval scheduling problem is to find a feasible solution S ⊆ [n] of
maximal weight.

Consider e.g. the problem of scheduling different families to take vacations in a time-share. The
intervals [s(i), f(i)] represent their proposed vacation dates, and w(i) represents how much they will
value (or pay for) the privilege. Weighted interval scheduling is the problem of scheduling them to
maximize sum happiness (or profit).

In solving this problem, we will imagine that our jobs are sorted in ascending order of finish times:
f(1) ≤ f(2) ≤ . . . ≤ f(n). If this is not already the case, we can make it so by sorting in O(n log n) time.
Moreover, let us write p(i) for the job with latest finishing time that is before job i’s start time (if there
is none, we define p(i) = 0). p(i) = max{j : f(j) ≤ s(i)}. We’ll assume we have pre-computed the values
of p(i) for all i; once again, this can be done in time O(n log n). Finally, for k ≤ n, lets write OPT(k) to
denote the value of the optimal solution to the weighted interval scheduling problem {w(i), s(i), f(i)}ki=1

— i.e. the problem that contains only the first k jobs.
Lets make an observation that is so simple it seems unlikely to be useful. Suppose S∗ is the solution

to a given weighted interval scheduling problem on the first n jobs. Then we are in one of two cases.
Either :
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1. n 6∈ S∗: In this case, we must have OPT(n) = OPT(n− 1), or

2. n ∈ S∗: In this case, we must have OPT(n) = OPT(p(n)) + wn. This is because we know that S∗

contains n, so no feasible solution can contain any point j > p(n), and all solutions that do not
contain a point j > p(n) are feasible, so we might as well choose the optimal such one.

This observation immediately gives us the following recursive algorithm for computing the value of
the optimal solution:

Algorithm 1 Compute-OPT(I, k)

if k = 0 then
Return 0.

else
Return max (Compute-OPT(I, k − 1),Compute-OPT(I, p(k)) + wk)

end if

This algorithm returns the correct solution. Our reasoning above is enough to prove the following
claim by induction on k:

Theorem 2 Given any instance I of the weighted interval scheduling problem, Compute-OPT(I, k)
returns the optimal feasible solution S∗ ⊆ [k].

Proof This is an induction on k. In the base case (k = 0), the solution is OPT(0) = 0, which is
what our algorithm returns. In the inductive case, we may assume that for any k′ < k, Compute-
OPT(I, k′) = OPT(k′). Since k − 1, p(k) < k, we therefore have that the algorithm returns:

OPT(k) = max (OPT(k − 1),OPT(p(k)) + wk)

which is correct by our reasoning above.

Unfortunately, the depth of the recursion tree generated by Compute-OPT(I, n) is n, and its branch-
ing factor is 2, so the recursive algorithm as we have written it runs in exponential time. Can we do
better?

The insight that lets us improve is that the recursion is spectacularly wasteful! Despite the fact that
the algorithm makes exponentially many recursive calls, most of them are repeats. In fact, there are only
n+1 distinct calls that are ever made, since the algorithm only takes as input a single varying parameter
(k), which ranges from k ∈ {0, . . . , n}. The trick is just to record the solutions to each sub-problem
as we compute them, and read them off (rather than recomputing them) if we need them again. The
following algorithm simply implements the naive recursion in Algorithm 2, with this caching step. The
below algorithm makes use of an array M [0, . . . , n] in which every entry is initially empty.

Algorithm 2 M-Compute-OPT(I, k)

if k = 0 then
Return 0.

else if M [k] is not empty then
Return M [k]

else
Let M [k] = max (M-Compute-OPT(I, k − 1),M-Compute-OPT(I, p(k)) + wk)
Return M(k)

end if

This is the “memoized” version of Algorithm 2. It returns exactly the same solution, but it never
repeats a recursive call that it has made before. Its not hard to see that now the running time is improved
from exponential to linear:
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Theorem 3 For any instance I of the interval scheduling problem, M-Compute-OPT(I, n) runs in time
O(n).

Proof Each call of M-Compute-OPT(I,k) runs in O(1) time and makes up to 2 recursive sub-calls.
So to bound the running time we must bound the total number of recursive subcalls made. For each
k, M-Compute-OPT(I, k) makes its recursive calls only if M [k] is empty. However, after the first such
time, it fills in M [k]. Hence for each k, calls to M-Compute-OPT(I, k) make at most 2 recursive calls
over the entire run of the algorithm. Thus the total number of recursive calls is bounded by 2n.

We’re almost done! It only remains to tick a few more boxes. We’ve implemented a recursive
algorithm, which was the most natural way to think about the problem at the start. But recursion can
have more overhead than we want in practice, so we might want a straightforward iterative algorithm.
This is easy once we observe that all our recursive algorithm is doing is filling out the array M , and that
to find the solution to M [k], we only need values of M [k′] for k′ < k. Thus we can just fill out the table
from the smallest to largest entry. This kind of implementation is sometimes called bottom-up dynamic
programming. This algorithm does exactly the same thing, and now its running time is transparently

Algorithm 3 Iterative-Compute-OPT(I)

M [0] = 0
for k = 1 to n do
M [k] = max(wj + M [p(k)],M [k − 1])

end for
Return M [n].

linear.
Finally, the algorithms we have given so far return the value of the optimal solution, but not the

solution itself. But the solution is easy to recover as well, once we have computed our array M , by
simply retracing the path of the recursion. Recall when we were deriving our recursion, we noted that
OPT(k) = OPT(k− 1) exactly when the optimal solution did not include k, and if the optimal solution
included k, then we had OPT(k) = wk + OPT(p(k). So given M , we can check which is the case to read
off the solution. Here we give the recursive version; you might write down the iterative version as an
exercise:

Algorithm 4 Extract-Solution(k)

if k = 0 then
Return ∅.

else
if wk + M [p(k)] ≥M [k − 1] then

Return {k} ∪ Extract-Solution(p(k))
else

Return Extract-Solution(k − 1)
end if

end if

Running Extract-Solution(n) makes at most n recursive calls that take O(1) time each, and so we
have:

Theorem 4 Given the array M generated by M-Compute-OPT(I) (or Iterative-Compute-OPT(I)),
Extract-Solution returns the optimal solution to the weighted interval scheduling instance I in O(n)
time.

Thus, we have an O(n log n) time solution in total (taking into account the possible need to sort the
jobs in I initially).
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