
CIS 320: Algorithms September 29, 2021

Lecture 8
Lecturer: Aaron Roth Scribe: Aaron Roth

Dynamic Programming II: Knapsack

In the last lecture, we solved our first problem with “dynamic programming”. Recall that this is one
of several terrible names for the otherwise simple process of “writing down a recursive algorithm and
caching the solutions to sub-problems so that you don’t have to wastefully compute them multiple times”.
Weighted Interval Scheduling was a “one dimensional” problem in the sense that the sub-problems were
specified by a single parameter, and when unrolling the recurrance, we found we only had to fill in the
entries for a single 1-dimensional array. But there is no reason that dynamic programming has to be
1-dimensional in this sense: today we’ll see a problem that is “two dimensional”.

Definition 1 (The Knapsack Problem) An instance I = ({si, vi}ni=1, C) of the knapsack problem is
given by a non-negative integer capacity C together with a collection of n items i ∈ {1, . . . , n}, each
of which has a non-negative integer size si and value vi. A subset S ⊆ [n] of the items is feasible if∑

i∈S si ≤ C, and it has value v(S) =
∑

i∈S vi. The goal of the Knapsack problem is to find the feasible
subset of items of maximal value.

Remember that the first step in coming up with a dynamic programming algorithm is coming up
with a recursion. It often helps to work backwards. So lets think. Suppose S∗ is the optimal solution to
a knapsack instance I. Is n ∈ S∗? There are two possibilities. Either:

1. n 6∈ S∗. In this case, the optimal solution to I is the same as the optimal solution to I ′ =
({si, vi}n−1i=1 , C). (Otherwise we could improve the value of the solution while maintaining feasibility
by picking OPT(S′)... Or :

2. n ∈ S∗. In this case, after accounting for item n, we have remaining capacity C − sn. The
optimal solution should fill this capacity optimally with the remaining items (else we’d have an
improvement) — so the optimal solution is the union of {n} together with the optimal solution to
I ′ = ({si, vi}n−1i=1 , C − wn).

This suggests that we will need to solve sub-problems that vary along two dimensions: how many
items are in the instance, and the capacity. Given an instance I, let us therefore define the following
quantity:

OPT(k,C ′) = max
S⊆[1,...,k]:

∑
i∈S si≤C′

∑
i∈S

vi

which is the value of the optimal solution to the sub-instance on items 1, . . . , k with capacity C ′. Trans-
lating the above reasoning into this notation, we have that:

OPT(n,C) = max (OPT(n− 1, C), vn + OPT(n− 1, C − sn))

With our recursion in hand, the hard part is done: we can now write down a recursive algorithm.
Observe that once again, the naive recursion would have exponential running time, since the depth of
the recursion tree is n and it has branching factor 2. But we will cache our intermediate results (i.e.
“memoize”) to avoid duplicating effort: We will now have a two dimensional array indexed as M [k,C],
corresponding to each of our sub-problems.

8-1



Algorithm 1 M-Compute-OPT(k,C)

if k = 0 or C ≤ 0 then
Return 0.

else if M [k,C] is not empty then
Return M [k,C]

else
Let M [k,C] = max (M-Compute-OPT(k − 1, C), vk + M-Compute-OPT(k − 1, C − sk))
Return M [k,C]

end if

Theorem 2 On any instance I, M-Compute-OPT(n,C) returns the optimal solution in time O(n ·C).

Proof The correctness of the algorithm follows by an induction on k+C together with the recurrence
we derived above. In the base cases in which either k = 0 or C ≤ 0, the algorithm returns 0 which is
correct.

In the remaining case, we may assume by our inductive assumption that M-Compute-OPT(k−1, C) =
OPT(k − 1, C) and M-Compute-OPT(k − 1, C − sn) returns OPT(k − 1, C − sn). It then follows from
our recurrance above that the algorithm returns the correct solution:

OPT(k,C) = max (OPT(k − 1, C), vk + OPT(k − 1, C − sk)) .

To bound the running time, we observe that the algorithm takes O(1) time per recursive call. It
makes 2 recursive calls for each entry of M (the first time it is accessed), and the total number of entries
in M is n · C.

Just as in last lecture, once we have used this algorithm to compute the value of OPT(n,C), from
the matrix M that is produced, we can trace the recursion backwards through it and recover the optimal
solution in O(n) time:

Algorithm 2 Extract-Solution(k,C)

if k = 0 then
Return ∅.

else
if vk + M [k − 1, C − sk] ≥M [k − 1, C] then

Return {k} ∪ Extract-Solution(k − 1, C − sk)
else

Return Extract-Solution(k − 1, C)
end if

end if

We get linear run time because at most one recursive call is made for each of the n values of k, and
the algorithm does a constant amount of work per call.

Finally, just as before, we can unroll the recursion and give an iterative version of our dynamic
program, which has practical advantages. We now need to fill out a two dimensional array: once again,
since the recursive calls always reference values of M indexed at k − 1, if we fill out the table so that
every entry at level k is completed before we move to level k + 1, we will always have the information
we need to proceed.

8-2



Algorithm 3 Iterative-Compute-OPT(I)

Initialize an n× C array M such that M [0, c] = 0 and M [k, 0] = 0 for all i, j.
for k = 1 to n do

for c = 1 to C do
Let M [k, c] = max (M [k − 1, c], vk + M [k − 1, c− sk])

end for
end for
Return M [n,C].

Once again, this algorithm is doing exactly the same thing as the recursive algorithm, but now the
O(nC) run-time is a little more transparent.

Observe that what we have come up with is not technically a polynomial time algorithm, because
it runs in time that is polynomial (linear) in C, rather than polynomial in the number of bits (logC)
needed to represent C. This is sometimes called a “pseudo-polyomial time” algorithm. Nevertheless,
this can be a useful algorithm in settings in which C is not enormous. A real polynomial time algorithm
for Knapsack is extremely unlikely, as it is an NP-hard problem.

8-3


