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Dynamic Programming III: Sequence Alignment

Suppose you try and remember how to spell “beurocracy”, but as always, fail. You type it into your
favorite text editor and it suggests the replacement ‘bureaucracy”. How did it know? It figured out
that the string you typed in was close to the word you wanted: For example, you could line them up as
follows:

beuro__cracy

b_ureaucracy

Each letter in the top is “matched” to the letter in the word below it. The symbols represent a
“gap” in the matching – for example, the first “e” in the top string is not matched to anything in the
bottom string. Some of the letters are matched onto their copies — for example, the “b” above is
matched to a “b” below. But some are not — for example, the “o” is matched to an “e”. We might
consider scoring such a matching with a cost — no cost for matching a letter with its match, but a
positive cost for a mismatch (maybe a lower cost for pairs of letters that are easy to mis-type, and a
higher cost for other pairs), and some other cost for unmatched letters. But there are many (infinitely
many!) ways to insert gaps into words and match the resulting letters. Given costs for different kinds
of mismatches, how can we find the cost of the cheapest such matching? The asymptotic running time
of such algorithms is less important in the domain of spell checking, in which words are generally very
short — but becomes much more important when we are talking about matching the strings of base
pairs making up chromosomes, which can have lengths reaching into the hundreds of millions. This is
the kind of thing that computational biologists do when trying to reproduce evolutionary trees from the
genomes of present-day animals.

To formalize the problem, we imagine that we are given two strings of (possibly) different lengths, X
and Y . We write X = x1, . . . , xm and Y = y1, . . . , yn where xi, yj represent characters in some common
alphabet.

Definition 1 (Matching) A matching M ⊆ {1, . . . ,m}× {1, . . . , n} is a set of ordered pairs such that
each index appears at most once: i.e. for each pair (i, j), (i′, j′) ∈M , i 6= i′ and j 6= j′. An index i ∈ [m]
is said to be unmatched if (i, j) 6∈ M for all j. Similarly, an index j ∈ [n] is said to be unmatched if
(i, j) 6∈M for all i.

Not all matchings are legal alignments however:

Definition 2 (Alignment) A matching M is an alignment if for all (i, j), (i′, j′) ∈ M , if i < i′ then
j < j′. Visually, this means that if we draw lines between the matched pairs of symbols in the strings,
the lines will not cross.

For example, the intuitive alignment:

stop_

_tops

is formalized as the alignment M = {(2, 1), (3, 2), (4, 3)}.
Now, in order to formalize the problem of finding the optimal alignment between two strings, we

need to define the cost of an alignment.

Definition 3 Given two strings X = x1, . . . , xm and Y = y1, . . . , yn and an alignment M , the cost of
M is the sum of its gap and mismatch costs:

C(M) = G(M) +MM(M)
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Here,
G(M) = δ · (|{i ∈ [m] : i is unmatched}|+ |{j ∈ [n] : j is unmatched}|)

is the gap cost, which pays a gap penalty δ for each unmatched position of X and Y , and

MM(M) =
∑

(i,j)∈M

αxiyj

is the sum of the mismatch costs αxiyj
for each matched pair of characters. Generally we assume that

for each character p, αp.p = 0 — i.e. we suffer no mismatch cost for pairing a character in X with the
identical character in Y .

The parameters δ and {αp,q} are inputs to the problem. Given these and a pair of strings X,Y , we seek
to find the alignment M of minimum cost.

To design a dynamic programming algorithm, we need to identify a recursive solution to our problem.
Suppose we are given two strings X = x1, . . . , xm and Y = y1, . . . , yn. It may be that the last character
in each string is matched: (xm, yn) ∈ M . In this case, we should continue and recursively find the
minimum cost alignment of what remains of each string: X ′ = x1, . . . , xm−1 and Y = y1, . . . , yn−1. But
what if (xm, yn) 6∈M — how do we make progress? Here is an important but simple observation:

Lemma 4 Let M be any alignment of X and Y . If (m,n) 6∈M , then either Xm or yn is unmatched in
M .

Proof Suppose otherwise. Then there are indices i < m and j < n such that (m, j), (i, n) ∈M . Since
this is an alignment and we have i < m, we must also have n < j. But this is a contradiction, since n is
the last index of Y .

Another way to restate this lemma which directly suggests a recursive formulation is as follows. In
an optimal alignment between X = x1, . . . , xm and Y = y1, . . . , yn, at least one of the following must be
true:

1. (m,n) ∈M , or

2. xm is unmatched, or

3. yn is unmatched.

Now we define some notation: Let OPT(i, j) denote the minimum cost of any alignment between
the string prefixes Xi = x1, x2, . . . , xi and Yj = y1, y2, . . . , yj . Our lemma above implies the following
recursive identity:

OPT(i, j) = min
(
αxiyj

+ OPT(i− 1, j − 1), δ + OPT(i− 1, j), δ + OPT(i, j − 1)
)

where each of the three terms in the minimum correspond to the three cases above. With the recursion
in hand, we’re almost ready to write down our algorithm — in fact, we don’t really have any design
choices left. All that remains is to work out the base cases, which come from the observation that the
best way to line up an i character string with a 0 character string is with i gaps: For all i, we have
OPT(i, 0) = OPT(0, i) = i · δ. This is enough for our algorithm:
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Algorithm 1 Alignment(X,Y )

Initialize an m× n array A.
Let A[i, 0] = iδ for each i.
Let A[0, j] = jδ for each j.
for i = 1 to m do

for j = 1 to n do
Let:

A[i, j] = min
(
αxiyj +A[i− 1, j − 1], δ +A[i− 1, j], δ +A[i, j − 1]

)
end for

end for
Return A[m,n]

Once it is written in this form, the algorithm is easy to analyze. Its correctness follows from the
fact that the cost for an alignment is additive and from the recursion we derived from Lemma 4. The
running time can be seen to be O(m ·n) from the fact that we perform m ·n iterations of our inner loop,
and each takes constant time. Just as we did in the previous lectures, given the array A produced by a
run of Alignment, we can recover the optimal alignment itself by tracing back the recursion, which also
takes O(m · n) time.
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