
CIS 320: Algorithms October 6, 2021

Lecture 10
Lecturer: Aaron Roth Scribe: Aaron Roth

Greedy Algorithms I: Unweighted Interval Scheduling

We’ve studied several frameworks for coming up with polynomial time algorithms: divide and con-
quer, and dynamic programming. These frameworks both look for some kind of high-level recursive
structure to take advantage of: if we can solve the right sub-problems optimally, we can stitch them
together. But it seems tempting sometimes just to go for it — to start constructing the solution right
away, with choices that seem reasonable, without having a theory of how they will fit together with the
rest of the solution. Algorithms like this are termed greedy, and often have the advantage that they are
very fast. But when do they work? In the next several lectures, we’ll examine different kinds of prob-
lem structures that allow such algorithms to find optimal solutions. We’ll start with the “unweighted”
version of the interval scheduling problem we considered previously. The goal is to schedule as many
non-intersecting jobs as possible — i.e. it is the weighted interval scheduling problem in the special case
where all weights are identical.

Definition 1 An instance of the unweighted interval scheduling problem is given by a collection I =
{s(i), f(i)}ni=1 of n jobs (s(i), f(i)). Each job has a real valued start time s(i), and finish time f(i).
Think of a job as representing an interval of utilization of some resource spanning [s(i), f(i)]

A feasible solution to the unweighted interval scheduling problem is a subset S ⊆ [n] of jobs such
that for each i ∈ S, the intervals [s(i), f(i)] are non-overlapping. The goal of the (unweighted) interval
scheduling problem is to find a feasible solution S ⊆ [n] of maximal cardinality |S|.

What should a “greedy” algorithm look like? The premise is that we should always pick the next
interval subject to our current feasibility constraints, in a way that seems myopically to be “best”, but
its not clear how we should evaluate what is best. Here are two proposals that do not work (you should
be able to come up with simple examples demonstrating why):

1. Always pick the next compatible job i that has the earliest start time s(i).

2. Always pick the next compatible job i that has the shortest duration f(i)− s(i).

But here is a proposal that seems pretty good:

Always pick the next compatible job i that has the earliest finish time f(i).

At least its hard to think of a counter-example. Can we prove that this always arrives at the optimal
solution?

First we recall the definition of a compatible job:

Definition 2 A job i is compatible with a job j if the intervals [s(i), f(i)] and [s(j), f(j)] are non-
overlapping. A job i is compatible with a collection of jobs S if i is compatible with every j ∈ S. A
collection of jobs S is feasible if for each i, j ∈ S, i and j are compatible.

Here is our proposed algorithm:

Algorithm 1 GreedyInterval(I)

Let S = ∅, R = [n].
while R is not empty do

Choose the job i with smallest finishing time i = arg mini∈R f(i).
Add i to S and Remove i from R.
Delete all jobs in R that are incompatible with i.

end while
Return S.

10-1

We can first observe that by construction, our algorithm returns a feasible set S:

Claim 3 For any instance I, GreedyInterval(I) returns a feasible solution S.

Our goal will then be to show that the solution S it returns is optimal: namely, for any feasible
solution O, |S| ≥ |O|. Our plan of attack is to show that for any optimal solution O, the solution S
that our algorithm is building up is always “staying ahead” of O. We will show that the intermediate
solutions S produced by our algorithm are always “better” than an appropriately defined prefix of O,
and as a result, we will show that the final output S is at least as large as O.

To carry out this argument, lets introduce some notation. Suppose our algorithm outputs a set S of
size |S| = k. It consists of k jobs S = {i1, . . . , ik} that we without loss of generality number in the order
in which they are added to S — i.e. i1 is the first job that was added to S, i2 is the 2nd, and so forth.
Now consider an optimal solution O of size |O| = m. We write O = {j1, . . . , jm}, where without loss of
generality, we number the jobs in their natural left-to-right ordering. Note that because O is feasible,
the ordering of the start times is the same as the ordering of the finish times. So j1 starts and finishes
before j2, which starts and finishes before j3, and so on. Our goal is to show that k = m.

The intuition for our greedy rule is that we want our resource to become free as soon as possible after
we satisfy the next request. We will formalize this by showing that the set S selected by our algorithm
“stays ahead” of O in the sense that for all r, f(ir) ≤ f(jr). Thus our algorithm always has at least as
many options for selecting the next job as the optimal solution would have had during its construction.

Lemma 4 For all indices r ≤ k, f(ir) ≤ f(jr).

Proof We prove this by induction. The base case is r = 1, and holds by definition, since we choose
i1 = arg minj f(j).

For the inductive case, we let r > 1 and assume that our induction hypothesis is true for r − 1:
f(ir−1) ≤ f(jr−1). Since O is feasible, we know that f(jr−1) ≤ s(jr). By our inductive hypothesis, we
therefore also have that f(ir−1) ≤ s(jr). Therefore, at round r of our algorithm, jr ∈ R is still in the
set of feasible intervals. Since our algorithm chooses ir ∈ arg mini∈R f(i), we must therefore have that
f(ir) ≤ f(jr), which is what we want.

We’re almost done. All that remains is to show that the above Lemma leads us to a contradiction if
in fact k < m.

Theorem 5 For any instance I, GreedyInterval(I) returns an optimal solution S.

Proof Suppose otherwise: that is, GreedyInterval returns S = {i1, . . . , ik}, but an optimal solution
O = {j1, . . . , jm} is such that m > k. By Lemma 4, we have that f(ik) ≤ f(jk). Since O is feasible, we
have that s(jk+1) ≥ f(jk) ≥ f(ik). Therefore, after ik is added to S, jk+1 remains compatible with S,
and hence jk+1 ∈ R. But this contradicts the fact that the algorithm has halted and output S, since the
algorithm only halts when R is empty.

And what about the run-time? If the jobs are already sorted in ascending order of their finishing
time, then the algorithm can be implemented in time O(n) by taking a single pass through the sorted
list of jobs. If they are not yet sorted, we can sort them in time O(n log n), obtaining total run time
O(n log n)

Given a sorted list of jobs, we can implement the algorithm in a single pass as follows. We always
select the first job i1 = 1. Then, given that we have selected jobs i1, . . . , ik−1 we keep iterating through
the sorted array until we find the first job such j that s(j) ≥ f(ik−1). When we do so, we select it:
ik = j, and continue.

There is another closely related problem that we can also solve with a greedy algorithm. Suppose
we have more than one resource (e.g. computer), and we must schedule all of the jobs, using multiple
resources if necessary. Given an instance I of the interval scheduling problem, we would like to schedule
all jobs by assigning each to resources such that:

10-2

1. The jobs scheduled to each resource are feasible (non-overlapping), and

2. We use as few resources as possible.

This is called the interval partitioning problem, since we can view it as the problem of dividing the jobs
amongst different resources such that none of the intervals assigned to a single resource are overlapping.

Definition 6 An instance of the interval partitioning problem is given by a collection I of jobs {(s(i), f(i)}ni=1.
A feasible solution to I is a partitioning S1, S2, . . . , Sk ⊆ [n] of the jobs such that each set Si consists
of non-overlapping intervals. The goal of the interval partitioning problem is to find a solution that
minimizes the number of partition elements k.

To get a handle on what an optimal solution might look like, it is helpful to have the concept of the
depth of an instance.

Definition 7 The depth of an instance I, written d(I), is the maximum number of intervals in I that
overlap a single point. In other words, it is:

d(I) = max
x
|{i : s(i) ≤ x ≤ f(i)}|

It is straightforward to see that:

Lemma 8 In any feasible solution to an interval partitioning instance I, k ≥ d(I).

This is because there is a point x such that |{i : s(i) ≤ x ≤ f(i)}| = d(I), and every job in this set must
be assigned to a different resource.

However, there is a simple greedy algorithm is able to achieve this bound, and hence is optimal. It
attempts to assign a label from 1, . . . , d(I) to each job, which can be viewed as partitioning the jobs into
d(I) parts.

Algorithm 2 GreedyIntervalScheduler(I)

Sort the intervals in ascending order by start time, denoted as I1, . . . , In.
for j = 1 to n do

For each interval Ii that comes earlier than Ij in sorted order and overlaps it, exclude Ii’s label
from consideration for Ij .
If there are any remaining labels in {1, . . . , d(I)} that have not been excluded, assign such a label
to Ij .

end for

Theorem 9 On any instance I, GreedyIntervalScheduler(I) assigns every job a label in {1, . . . , d(I)},
and no two jobs assigned the same label overlap.

Proof First we argue that every job is assigned a label. Consider any job Ij . Since the jobs are sorted
in order of start time, there can be at most d(I)−1 preceding intervals Ii that overlap it, since otherwise
there would be more than d(I) intervals overlapping the point x = s(Ij), contradicting the definition of
depth. Thus there is a remaining label in {1, . . . , d(I)} that has not been excluded, which is assigned
to Ij . Moreover, any two intervals Ii and Ij assigned to the same label do not overlap. Without loss of
generality, assume that i < j. Then if Ii overlaps with Ij , then when job j is under consideration, by
construction, Ii’s label will be excluded.

Because we know that any feasible solution must use at least k ≥ d(I) many resources, and we have
an algorithm that finds a feasible solution that never uses more than k ≤ d(I) many resources, we know
that our algorithm must be optimal.

10-3

