
CIS 320: Algorithms October 27 and November 1, 2021

Lecture 15-16
Lecturer: Aaron Roth Scribe: Aaron Roth

Polynomial Weights I and II

In the next two lectures, we will develop algorithms for prediction problems that must be solved in an
adversarial, sequential setting. These algorithms operate in an environment that we haven’t studied
before in this class: rather than having a problem instance fully described up front, that we must solve,
we will have an environment in which our algorithm must interact dynamically. The algorithms we
derive will be interesting in their own right, and are fundamental building blocks in machine learning,
but as we will see, they are also useful and powerful tools for solving other algorithmic problems in a
more standard setting.

As a simple example to keep in mind, consider the following toy model of predicting the stock market:
every day the market goes up or down, and you must predict what it will do before it happens (so that
you can either buy or short shares). You don’t have any information about what the market will do,
and it may behave arbitrarily, so you can’t hope to do well in an absolute sense. However, every day,
before you make your prediction, you get to hear the advice of a bunch of experts, who make their
own predictions. These “experts” may or may not know what they are talking about, and you start off
knowing nothing about them. Nevertheless, you want to come up with a rule to aggregate their advice
so that you end up doing (almost) as well as the best expert (whomever he might turn out to be) in
hindsight. Sounds tough.

Lets start with an even easier case:

• There are N experts who will make predictions in T rounds.

• At each round t, each expert i makes a prediction pti ∈ {U,D} (up or down).

• We (the algorithm) aggregate these predictions somehow, to make our own prediction ptA ∈ {U,D}.
Then we learn the true outcome ot ∈ {U,D}. If we predicted incorrectly (i.e. ptA 6= ot), then we
made a mistake.

• To make things easy, we will assume at first that there is one perfect expert who never makes a
mistake (but we don’t know who he is).

Can we find a strategy that is guaranteed to make at most log(N) mistakes?
We can, using the simple halving algorithm!

Algorithm 1 The Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do

Let St
U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St

D = St \ St
U be the set

who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Its not hard to see that the halving algorithm makes at most logN mistakes under the assumption
that one expert is perfect:

Theorem 1 If there is at least one perfect expert, the halving algorithm makes at most logN mistakes.

15-16-1

Proof Since the algorithm predicts with the majority vote, every time it makes a mistake at some
round t, at least half of the remaining experts have made a mistake and are eliminated, and hence
|St+1| ≤ |St|/2. On the other hand, the perfect expert is never eliminated, and hence |St| ≥ 1 for all t.
Since |S1| = N , this means there can be at most logN mistakes.

Not bad – logN is pretty small even if N is large (e.g. if N = 1024, logN = 10, if N = 1, 048, 576,
logN = 20), and doesn’t grow with T , so even with a huge number of experts, the average number of
mistakes made by this algorithm is tiny.

What if no expert is perfect? Suppose the best expert makes OPT mistakes. Can we find a way to
make not too many more than OPT mistakes?

The first approach you might try is the iterated halving algorithm:

Algorithm 2 The Iterated Halving Algorithm

Let S1 ← {1, . . . , N} be the set of all experts.
for t = 1 to T do
If |St| = 0 Reset: Set St ← {1, . . . , N}.
Let St

U = {i ∈ S : pti = U} be the set of experts in St who predict up, and St
D = St \ St

U be the set
who predict down.
Predict with the majority vote: If |St

U | > |St
D|, predict ptA = U , else predict ptA = D.

Eliminate all experts that made a mistake: If oT = U , then let St+1 = St
U , else let St+1 = St

D

end for

Theorem 2 The iterated halving algorithm makes at most log(N)(OPT + 1) mistakes.

Proof As before, whenever the algorithm makes a mistake, we eliminate half of the experts, and so
the algorithm can make at most logN mistakes between any two resets. But if we reset, it is because
since the last reset, every expert has made a mistake: in particular, between any two resets, the best
expert has made at least 1 mistake. This gives the claimed bound.

We should be able to do better though. The above algorithm is wasteful in that every time we reset,
we forget what we have learned! The weighted majority algorithm can be viewed as a softer version of
the halving algorithm: rather than eliminating experts who make mistakes, we just down-weight them:

Algorithm 3 The Weighted Majority Algorithm

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t

U =
∑

i:pt
i=U wi be the weight of experts who predict up, and W t

D =
∑

i:pt
i=D wi be the weight

of those who predict down.
Predict with the weighted majority vote: If W t

U > W t
D, predict ptA = U , else predict ptA = D.

Down-weight experts who made mistakes: For all i such that pti 6= ot, set wt+1
i ← wt

i/2
end for

Theorem 3 The weighted majority algorithm makes at most 2.4 (OPT + log(N)) mistakes.

Note that log(N) is a fixed constant, so the ratio of mistakes the algorithm makes compared to OPT is
just 2.4 in the limit – not great, but not bad.
Proof Let M be the total number of mistakes that the algorithm makes, and let W t =

∑
i w

t
i be the

total weight at step t. Note that on any round t in which the algorithm makes a mistake, at least half of
the total weight (corresponding to experts who made mistakes) is cut in half, and so W t+1 ≤ (3/4)W t.

15-16-2

Hence, we know that if the algorithm makes M mistakes, we have WT ≤ N · (3/4)M . Let i∗ be the best
expert. We also know that wT

i = (1/2)OPT, and so in particular, WT > (1/2)OPT. Combining these two
observations we know: (

1

2

)OPT

≤W ≤ N
(

3

4

)M

(
4

3

)M

≤ N · 2OPT

M ≤ 2.4(OPT + log(N))

as claimed.

We’ve been doing well; lets get greedy. What do we want in an algorithm? We might want:

1. It to make only 1 times as many mistakes as the best expert in the limit, rather than 2.4 times...

2. It to be able to handle N distinct actions (a separate action for each expert), not just two (up and
down)...

3. It to be able to handle experts having arbitrary costs in [0, 1] at each round, not just binary costs
(right vs. wrong)

Formally, we want an algorithm that works in the following framework:

1. In rounds 1, . . . , T , the algorithm chooses some expert it.

2. Each expert i experiences a loss `ti ∈ [0, 1]. The algorithm experiences the loss of the expert it
chooses: `tA = `tit .

3. The total loss of expert i is LT
i =

∑T
t=1 `

t
i, and the total loss of the algorithm is LT

A =
∑T

t=1 `
t
A.

The goal of the algorithm is to obtain loss not much worse than that of the best expert: mini L
T
i .

The polynomial weights algorithm can be viewed as a further smoothed version of the weighted
majority algorithm, and has a parameter ε which controls how quickly it down-weights experts. Notably,
it is randomized : rather than making deterministic decisions, it randomly chooses an expert to follow
with probability proportional to their weight.

Algorithm 4 The Polynomial Weights Algorithm (PW)

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t =

∑N
i=1 w

t
i .

Choose expert i with probability wt
i/W

t.
For each i, set wt+1

i ← wt
i · (1− ε`ti).

end for

Theorem 4 For any sequence of losses, and any expert k:

1

T
E[LT

PW] ≤ 1

T
LT
k + ε+

ln(N)

ε · T

In particular, setting ε =
√

ln(N)
T we get:

1

T
E[LT

PW] ≤ 1

T
min
k
LT
k + 2

√
ln(N)

T

15-16-3

In other words, the average loss of the algorithm quickly approaches the average loss of the best expert
exactly, at a rate of 1/

√
T . Note that this works against an arbitrary sequence of losses, which might

be chosen adaptively by an adversary. This is pretty incredible. And it will be the source of the power
of this framework in applications: we (the algorithm designer) can play the role of the adversary to get
the results that we want.

Ok, on to the proof:
Proof Let F t denote the expected loss of the polynomial weights algorithm at time t. By linearity of
expectation, we have E[LT

PW] =
∑T

t=1 F
t. We also know that:

F t =

∑N
i=1 w

t
i`

t
i

W t

How does W t change between rounds? We know that W 1 = N , and looking at the algorithm we see:

W t+1 = W t −
N∑
i=1

εwt
i`

t
i = W t(1− εF t)

So by induction, we can write:

WT+1 = N

T∏
t=1

(1− εF t)

Taking the log, and using the fact that ln(1− x) ≤ −x, we can write:

ln(W t+1) = ln(N) +

T∑
t=1

ln(1− εF t)

≤ ln(N)− ε
T∑

t=1

F t

= ln(N)− εE[LT
PW]

Similarly (using the fact that ln(1− x) ≥ −x− x2 for 0 < x < 1
2), we know that for every expert k:

ln(WT+1) ≥ ln(wT+1
k)

=

T∑
t=1

ln(1− ε`tk)

≥ −
T∑

t=1

ε`tk −
T∑

t=1

(ε`tk)2

≥ −εLT
k − ε2T

Combining these two bounds, we get:

ln(N)− εLT
PW ≥ −εLT

k − ε2T

for all k. Dividing by ε and rearranging, we get:

LT
PW ≤ min

k
LT
k + εT +

ln(N)

ε

15-16-4

One final observation: we have described the algorithm so far as if it is randomly selecting some

action i at each round, and have been measuring its expected loss at each round:
∑N

i=1
wt

i

W t `
t
i. This

makes sense if the algorithm must choose an expert to play at every round. But in some settings, it
makes sense for the algorithm to play a vector in ∆[n] = {p ∈ [0, 1]N :

∑n
i=1 pi = 1} at every round. For

example, it might be interacting in the following setting, called online adversarial linear optimization:

1. In rounds 1, . . . , T the algorithm chooses a vector wt ∈ ∆[N].

2. The adversary chooses a loss vector `t ∈ [0, 1]N .

3. The algorithm experiences loss `tA = 〈wt, `t〉.

4. The goal of the algorithm is to guarantee that:

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈∆[n]

1

T

T∑
t=1

〈w∗, `t〉+ o(1).

In this case, we can view the exact same algorithm we have derived and analyzed as a deterministic

algorithm for choosing such a vector — at round t is plays the vector wt = { wt
i

W t }ni=1.

Algorithm 5 The Polynomial Weights Algorithm for Online Linear Optimization

Set weights w1
i ← 1 for all experts i.

for t = 1 to T do
Let W t =

∑N
i=1 w

t
i .

Play vector wt = { wt
i

W t }ni=1

For each i, set wt+1
i ← wt

i · (1− ε`ti).
end for

Our existing analysis proves the following theorem:

Theorem 5 Setting ε =
√

ln(N)
T , for any sequence of losses `t ∈ [0, 1]N :

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈∆[n]

1

T

T∑
t=1

〈w∗, `t〉+ 2

√
ln(N)

T

Proof The left hand side is exactly the expected loss of the polynomial weights algorithm we analyzed
in the experts setting. Continuing the translation, the “loss of expert i” corresponds to 1

T

∑T
t=1〈ei, `t〉,

where ei is the i’th standard basis vector (with a 1 in the i’th coordinate and a 0 in every other
coordinate). Finally observe that we always have that for every sequence of losses:

min
w∗∈∆[n]

T∑
t=1

〈w∗, `t〉 =

T∑
t=1

〈ei∗ , `t〉

where i∗ = arg mini∈[N]

∑T
t=1 `

t
i. Hence regret to the best basis vector ei∗ (i.e. the best expert) implies

regret to the best vector w∗ ∈ ∆[N].

Finally, we observe that there if we are using polynomial weights for online linear optimization, there
is no reason to restrict attention to vectors w∗ whose coordinates sum to 1, or losses that lie in the range
[0, 1]. We simply have to pay for the scale of the vectors we are optimizing over. Lets see how we could
use the polynomial weights algorithm to solve the online linear optimization problem over the set of

15-16-5

non-negative vectors w that sum to at most R1: BN (R1) = {w ∈ RN
≥0 :

∑n
i=1 ≤ R1}, for loss functions

that take values in the range `ti ∈ [−R2/2, R2/2].
First lets deal with the issue of having coordinates of w that sum to at most some value R1 rather

than exactly R1. We can simply add an extra N + 1’st coordinate that always has loss `tN+1 = 0.
Running our algorithm in this augmented N + 1 dimensional space means that if the N + 1 dimensional
vector wt has coordinates summing to exactly R1 at every round, the first N coordinates of w (the “real
ones”) sum to at most R1 — and the algorithm experiences the same loss as if it played in only the real
N dimensional space.

Next lets deal with the issue of negative losses. This is also easy: simply shift them by adding
R2/2 to every coordinate. Now we have `ti ∈ [0, R2], and note that the regret to any target w∗ remains
unchanged under this shift, because:

〈wt, `t +R2/2〉 − 〈w∗, `t +R2/2〉 =
(
〈wt, `t〉 − 〈w∗, `t〉

)
+
(
〈R2/2, `

t〉 − 〈R2/2, `
t〉
)

= 〈wt, `t〉 − 〈w∗, `t〉

So regret bounds for the shifted space hold also for the original losses.
We’re almost done. We simply have to scale down everything, apply our bounds, and then remember

to scale back up. Suppose we divide the coordinates of wt by R1 and the coordinates of `t by R2. We
are now in the setting for which we have proven the regret bound for the polynomial weights algorithm,
and so we have that the polynomial weights algorithm can obtain the regret bound:

1

T

T∑
t=1

〈w
t

R1
,
`t

R2
〉 ≤ min

w∗∈∆[n]

1

T

T∑
t=1

〈w
∗

R1
,
`t

R2
〉+ 2

√
ln(N)

T

Multiplying this bound through by R1 ·R2 we obtain:

Theorem 6 For any sequence of losses `t ∈ [−R2/2, R2/2]N , the polynomial weights algorithm can be
used to play vectors wt ∈ BN (R1) and obtain:

1

T

T∑
t=1

〈wt, `t〉 ≤ min
w∗∈BN (R1)

1

T

T∑
t=1

〈w∗, `t〉+ 2R1R2

√
ln(N)

T

15-16-6

