
CIS 320 Problem Set 1

Due: Wednesday 9/22/21

Welcome to Problem Set 1. A few notes before you begin.

• You may collaborate with up to 4 other people. All work must be written up individually. You may
collaborate, but you cannot copy. E.g. you can talk to your friends about ideas for a problem together,
but you cannot copy their solution and just change some words around. List your collaborators at
the top of your submission.

• Googling or looking up solutions in any way is not allowed.

• Cheating is not worth it! Your grade in this course does not define your worth as a person, and in 10
years you will not care about your bad grade on a homework assignment. But you will care if you are
caught plagiarizing: plagiarizing has serious consequences, including the potential of expulsion.

• These problems are designed to challenge you. Start them early; if we’ve done our job well writing
them, you will have to chew on them for a while before finding the solutions, and that means you will
do best if you can sleep on your solutions rather than starting them the night before the due date.

• You do not need to implement anything in code. In fact, please do not. Pseudocode or a clear English
explanation of your algorithm are both acceptable: in some cases pseudocode may be clearer than
plain English, and in others the plain English might be better.

• If a question asks you to come up with an algorithm with a certain target runtime (say O(n log n)),
and you don’t know how to achieve this runtime but know how to solve the problem less efficiently
(in, say, Θ(n2) time), write that down! Depending on how inefficient your solution is compared to the
benchmark, it will receive a varying amount of credit.

• All analysis must be mathematically rigorous. Any answer you provide should be proven.

• Remember, we can’t evaluate your work if we can’t understand it. Communicating mathematical
and/or complex ideas is an important skill in computer science; treat your problem sets as practice.

• Have fun!!
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Problem 1 (Dishwasher Drama). It’s your turn to run the dishwasher. Because your dishwasher sucks, you
have to have all of the small dishes together and all of the large dishes together, or else they don’t get clean.
You only have two sizes of plates: small and large. You also need to keep all of the plastic dishes on the top
shelf so they don’t melt, and the ceramic ones on the bottom shelf. Your unhelpful roommate Todd already
loaded the dishwasher, but put the dishes in willy-nilly. There is one open spot you can temporarily put
a dish in, but you cannot put dishes on the counters or sink, which are all covered in dirty dishes (thanks
Todd). You also have a broken wrist, so can only move a single dish at a time. Provide an algorithm to
implement the sorting and analyze its runtime. Try to be as efficient as possible: you want to be able
to spend your time on your algorithms homework not loading the dishwasher after all! Assume that any
searches for a particular plate take negligible time; the only operation we care about is the act of moving a
single plate, which you should consider a constant-time operation, and that n plates can fit on the top shelf
and n plates can fit on the bottom shelf.

Problem 2 (Marvelous Matchings). After being shown a weighted bipartite matching algorithm in CIS
320, you and your friends are so inspired that you begin talking about other algorithms that could accom-
plish the same task. Three of your friends each propose a different matching algorithm that seems promising.

Following the form discussed in lecture, the algorithms all take as argument a graph G = (L,R,w). L is
a set of n left hand vertices, R is a set of m right hand vertices, and w is a weight function w : L×R→ R≥0,
where w(u, v) gives the weight of edge (u, v) for each pair of vertices u ∈ L and v ∈ R. Each algorithm
outputs µ, a list of vertex pairs representing a valid matching.

The three algorithms are as follows:

1. For each vertex Li, iterate through R to find the unmatched vertex Rj that gives the highest match
weight and add (Li, Rj) to the matching. Ties are broken by selecting the first vertex of that weight
seen.

2. Precompute the values of all the edges in the graph using w. Sort the edges by decreasing weight using
mergesort. Then, iterate through the list of edges and add each edge to the matching only if both the
vertices are currently not in the matching.

3. Iterate through all possible µ and select the µ which maximizes w(µ). Note that this includes iterating
through obviously non-optimal matchings, such as the matching comprised of a single edge in G.

Each friend argues that their algorithm is the fastest and outputs the highest-weight matching w(µ) on
any graph. You are skeptical of their claims and decide to analyze these algorithms for yourself.

For each algorithm A on the list above:

a) Assuming that |L| = |R| = n, for algorithms 1 and 2 determine their worst case time complexity, and
show that the runtime of algorithm 3 is Ω(n! · superpolynomial(n)).1

Hint: The runtime of algorithm 3 scales with the number of possible matchings in a graph, so write
an expression counting this and try to lower bound it. You do not need factorial approximations such
as Stirling’s to solve this problem.

b) Determine how A’s matching weight compares to the maximum matching weight OPT in the worst
case. Formally: for a particular graph G, let w(A(G)) be the weight of the matching which is output
by A and let OPT (G) be the weight of the maximum matching. Find the largest σ that satisfies
σ · OPT (G) ≤ w(A(G)) over all possible choices of G. Your answer should be in one of the following
forms: (i) a constant, (ii) an expression including n, or (iii) the statement that σ is arbitrarily small.

Note: You can assume all the above algorithms have data structures for constant-time lookups and
updates in order to check whether a particular element is already in the matching. Beyond this, when
analyzing the runtimes of these algorithms, consider them exactly as presented, without any extra techniques
that might optimize the approach. The intention of this problem is algorithm analysis, not algorithm design.

1A function f(n) is superpolynomial in n if f(n) = ω(nc) for any constant c > 0.
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Problem 3 (Synergistic Selection). Consider n ≥ 1 roller derby players, with skill levels a1, ..., an. You are
a coach and are in charge of selecting a team of any size from among these players. Above all, you want
your team to be close-knit, that is, to consist of players with comparable skills.

A team is close-knit if for any player on the team, their skill level does not exceed the combined skill of
any two players on the team. Consider the following examples:

• Bonnie has skill 100, Mia has skill 80, and Tara has skill 77. Together they form a close-knit team.

• Helix has skill 40, Tart has skill 40, Bart has skill 60 and Eagle has skill 100. Together they do not
form a close-knit team, since Helix and Tart together have worse skill than Eagle alone: 40 + 40 < 100.

Teams of size at most 2 are considered close-knit.

a) You are given a list of n teammates’ skill levels in sorted order. Implement an O(1) algorithm that
checks whether they form a close-knit team.

b) Now you are given n ≥ 1 players and a sorted list of their skill levels: a1 ≤ a2 ≤ . . . ≤ an. That is,
player 1 has the lowest skill level and player n has the highest. You want to find a close-knit team
with the maximum total skill level. The team can be any size. Design an algorithm that does so in
O(n) time. Note: even if you can’t get an O(n) solution, please provide the fastest algorithm you can
come up with and its run-time. Any O(n log n) solution will get most of the credit.

Problem 4 (Ads Apocalypse). Pierogi Supplies Incorporated (PSI), a specialty dumpling-making supply
store in Philadelphia, is looking to raise their revenue. The manager of PSI is convinced that broadcasting
in-store advertisements is the best way towards financial prosperity. To determine when to play the ads,
she splits a business day into N ≥ 1 small chunks of time numbered 1, . . . , N (these chunks might be
seconds or minutes), and faithfully records customer visit times on a sunny Monday: for each of the n ≥ 1
customers on that day, she writes down ai and bi (1 ≤ i ≤ n), the chunk indices corresponding to customer
i’s entry and exit time. E.g. if the business day were split into minute-long intervals, AJ is customer i and
they enter 2 hours after the store was opened and leave 10 minutes later, the manager would write down
ai = 120, bi = 130.

Absent further data, the manager extrapolates that on all future business days, customers will arrive and
leave at the exact same times as today. Given this assumption, she tasks you with finding an optimal ad
schedule. She clarifies that each ad takes up a single chunk of time, and for any customer i to hear that ad,
the chunk number must be in [ai, bi]. The manager wants to expose every customer to at least 2 ads. Assume
that the customers stay long enough that this is possible. Additionally, to reduce psychological damage to
the store employees, the manager asks you to minimize the total number of ads played. Design a O(n log n)
runtime algorithm that finds an optimal schedule.

Problem 5 (Gregarious Gourmands). Filibucha, an elite kombucha lovers’ club in Center City, keeps
extensive records of past memberships. For each of its n ≥ 1 past members, Filibucha keeps the start date
si and end date ti of their membership. In an attempt to reconstruct the club’s illustrious history, Filibucha
hires you to help them find all maximal Kombucha Contemporaries Cliques (KCC). A KCC is any subset of
the n past members who could have plausibly enjoyed Filibucha’s kombucha together on at least one date
(we assume each member i is still around on the last day ti of their membership). A KCC is maximal if no
other KCC strictly contains it.

Let us denote by w the total size of all maximal KCC (for each member of the club, w counts them as
many times as there are maximal KCC they were ever part of). Design an O(n log n + w)-time algorithm
that takes as input Filibucha’s membership records, and outputs all maximal KCC’s. For each maximal
KCC, all of its members need to be listed. Note: even if you can’t achieve the above runtime, please provide
the fastest algorithm you can come up with and its run-time. Any O(n2) solution will get significant partial
credit.
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