
CIS 320 Problem Set 4

Due: Wednesday 11/10/21

Welcome to Problem Set 4, which will be a unifying journey through the main topics covered so far: DP,
greedy algorithms, and flows. A few notes before you begin.

• You may collaborate with up to 4 other people. All work must be written up individually. You may
collaborate, but you cannot copy. E.g. you can talk to your friends about ideas for a problem together,
but you cannot copy their solution and just change some words around. List your collaborators at
the top of your submission.

• Googling or looking up solutions in any way is not allowed.

• Cheating is not worth it! Your grade in this course does not define your worth as a person, and in 10
years you will not care about your bad grade on a homework assignment. But you will care if you are
caught plagiarizing: plagiarizing has serious consequences, including the potential of expulsion.

• These problems are designed to challenge you. Start them early; if we’ve done our job well writing
them, you will have to chew on them for a while before finding the solutions, and that means you will
do best if you can sleep on your solutions rather than starting them the night before the due date.

• You do not need to implement anything in code. In fact, please do not. Pseudocode or a clear English
explanation of your algorithm are both acceptable: in some cases pseudocode may be clearer than
plain English, and in others the plain English might be better.

• If a question asks you to come up with an algorithm with a certain target runtime (say O(n log n)),
and you don’t know how to achieve this runtime but know how to solve the problem less efficiently
(in, say, Θ(n2) time), write that down! Depending on how inefficient your solution is compared to the
benchmark, it will receive a varying amount of credit.

• For each of our algorithm design questions, you should come up with a deterministic algorithm unless
the question specifies that a randomized algorithm is wanted.

• All analysis must be mathematically rigorous. Any answer you provide should be proven.

• Remember, we can’t evaluate your work if we can’t understand it. Communicating mathematical
and/or complex ideas is an important skill in computer science; treat your problem sets as practice.

• You should use LaTeX to typeset your solutions.

• You do not need any knowledge of Lord of the Rings in order to complete this problem set. Note that
the majority of the TAs writing the problems did not have any prior experience with Lord of the Rings.
Ira has enough Lord of the Rings knowledge for everyone combined.

• Have fun!!

1

A Faceoff: Flows vs. Dynamic Programming

After the immense popularity of the chess-themed show The Queen’s Gambit, streaming platform Nutflex
follows the trend and releases a new show, The Dominoes Cohabit. As a result, the ancient game of Dominoes
is back to the zenith of its popularity (as is a certain pizza restaurant chain). We have decided to use this
opportunity and treat you to two dominoes-themed problems.

Problem 1 (Go with the Flow). Your friend Steve (yes, the one who helped evaluate the quality of your
poetry) visits your place for another poetry-storming session. At this point he has not slept for 96 hours, so
in addition to crazy poetic ideas his personality has developed a touch of violence. While you are preparing
tea with honey in the kitchen, Steve grabs your favorite chess board of size m× n, and knocks out some of
the squares, so that now your chessboard has holes instead of squares in certain locations! He then realizes
that you will not like the sight of a destroyed chessboard, and decides to appease you by tiling the remnants
of the board with as many 2× 1 dominoes as possible! Dominoes can be oriented vertically or horizontally,
and are not allowed to overlap, nor cover any of the holes.

Figure 1: Holes are in black, and the remaining squares are properly tiled with dominoes.

Design a flow-based algorithm (i.e. an algorithm that reduces the problem to a max-flow problem, and then
solves that using the Ford-Fulkerson algorithm from class) that takes as input m,n, and the locations of
the holes (which can be anywhere on the board, and can come in any number), and outputs the maximum
number of dominoes that you can tile the remaining board with.

Problem 2 (DP Strikes Back). Given an m× n chessboard, and 2× 1 dominoes, how many ways are there
to completely tile the chessboard with dominoes without overlap? (That is, each square of the board must
be covered by precisely one domino.) Assume all dominoes are identical, and can be used in both the vertical
and the horizontal orientation.

Come up with, and analyze, a O(nm · 2min{n,m}) runtime dynamic programming algorithm that, on input
m,n outputs the number of domino tilings of the m × n board, as defined above. Hint: We bet you have
seen this runtime before... could it be on a previous homework?

Flows for Machine Learning

Problem 3 (Pre-Neural-Networks Image Processing). In year 2067, famous Convolutional Neural Networks
Sensei Alex K finally decides to retire and move to her countryside house in rural Massachusetts. One
morning, she flips through her favorite childhood photos and is overcome by a sense of nostalgia: she
remembers how cool and simple life was before CNNs were invented, and challenges herself to process these
images in an old-school fashion: instead of CNN, she wants to use her favorite algorithmic technique of flows
that she learnt in her undergrad algorithms class.

To define the task to be carried out, she settles on foreground/background detection. Specifically, the task
is to automatically split a photo (in the digital format) into foreground and background pixels.

Formally, a digital image is represented as an m× n matrix of pixels. Thus, each pixel is represented using
its row and column indices as (x, y). Each pixel’s neighbors (there are up to four of them) are defined to be
the pixels that it shares a side with. We call Nm,n the set of pairs of neighboring pixels. For each pixel (x, y),

2

Alex has estimated, using statistical methods, two quantities: fx,y ≥ 0, which is the probability that (x, y)
is a pixel in the foreground, and bx,y ≥ 0, which is the probability that (x, y) belongs to the background.
Furthermore, for every two pixels (x1, y1), (x2, y2) that are neighbors, Alex has estimated s(x1,y1),(x2,y2) ≥ 0,
which is a measure of synergy between the two pixels; the higher s(x1,y1),(x2,y2), the more likely it is that
both these pixels are of the same type (both foreground or both background).

Given these input data (the height and width m,n of the image and the estimated parameters — the
collections of numbers fx,y, bx,y and s(x1,y1),(x2,y2)), Alex needs to partition the entire set of the image’s mn
pixels into the set F of foreground pixels and the set B of background pixels. The loss of any partition
(F,B) is defined to be:

`(F,B) := −
∑

(x,y)∈F

fx,y −
∑

(x,y)∈B

bx,y +
∑(

(x1,y1),(x2,y2)
)
∈Nm,n:

one pixel is in F, the other in B

s(x1,y1),(x2,y2).

The first and second summation reward the placement of each pixel (x, y) into foreground or background in
accordance with which of fx,y and bx,y is a larger number. The last term penalizes each pair of neighboring
pixels that end up on the opposite sides of the partition, by the amount equal to their synergy.

Your task is to formulate and analyze a flow-based algorithm that finds a minimum-loss partition (F,B) of
the set of pixels into foreground and background pixels. Specifically, Alex asks you to reduce this problem
to finding a minimum cut in a directed network. In order to do that: 1) Define a weighted directed network
G(V,E) with a dedicated source and a sink, such that its cuts corresponds precisely to the partitions (F,B)
of the pixel set, and such that the value of each cut is equal to the loss of the corresponding partition (F,B);
2) Show the correctness of this reduction, and analyze the runtime of the Ford-Fulkerson algorithm as applied
to this setting.

The Ultimate Greed: It Ends Here1

Problem 4 (Matroids: An Introduction). By this point, you might be wondering (are you?): is there a
general way to characterize settings where the greedy approach provably results in optimal solutions? In this
and the next problem, we will explore a general class of domains where greed is the way to go: matroids.

We begin with the definition. A pair (E, I), where E is a finite set and I is a collection of subsets of E, is
called a matroid if the following three axioms are satisfied:

1. The empty set belongs to the collection I: that is, ∅ ∈ I.

2. If a subset of E belongs to the collection I, then all of its subsets also belong to I: that is, for any
A,B such that B ∈ I and A ⊆ B, it also holds that A ∈ I.

3. Any non-maximal-size subset in the collection I can be augmented with a single element from any larger
set in I such that the augmented set is also in I. Formally, for any A,B ∈ I such that |B| > |A|, there
exists an element x ∈ B −A such that (A ∪ {x}) ∈ I.

As a useful bit of terminology, each set in the collection I is called an independent set.

Whew. This was a lot to parse. But the main takeaways from this set of axioms are as follows: a matroid
describes a collection of subsets of a certain ground set, called independent sets, such that all subsets of an
independent set are also independent, and such that any independent set, unless it already has the maximum
size among all other independent sets, can be grown into a slightly bigger independent set by adding to it
some element of the ground set (in fact some element from any larger independent set).

Part 4A. It is time to get comfortable with this abstract-looking notion: let us work out an example!
Show that if E = {a, b, c, d}, and I = {∅, a, b, c, d, ab, ac, ad, bc, bd, cd}, then (E, I) is a matroid.

1It actually does not end here. Matroids have further generalizations compatible with greedy algorithms, such as greedoids
and matroid embeddings.

3

Now we are ready to discuss the main algorithmic property of matroids, which is the reason we are studying
them. Informally, this property states: greed always works on matroids!

Formally, let us define a weighted matroid as follows. A weighted matroid is a tuple (E, I, {w}x∈E) such
that (E, I) is a matroid and for each element x ∈ E, it is endowed with weight wx > 0. By extension, the
weight of a subset S ⊆ E is defined as the sum of its elements’ weights: wS :=

∑
x∈S wx.

Now here is our algorithmic question of interest: Given a matroid (E, I), how do we find a min-weight
maximally sized independent set S ∈ I? The following simple greedy approach turns out to be the answer.

The Matroid Greedy Algorithm: Start with S = ∅. While you can, do the following: from the set of elements
x ∈ E − S such that (S ∪ {x}) ∈ I, select the min-weight element x′ and add it to your set S: that is, let
S ← S ∪ {x′}. If none of the elements in E − S can be added to S without making it non-independent,
terminate and return the current set S.

Part 4B. Prove that for any matroid (E, I), the Matroid Greedy algorithm indeed returns a min-weight
maximal independent set S (i.e. the min-weight independent set among those independent sets that cannot
be grown into bigger independent sets).

As it turns out, not only is the Matroid Greedy the “right” algorithm to be used with matroids, but conversely,
matroids are in some sense the “right” setting for the Matroid Greedy algorithm to produce optimal solutions.

Part 4C. Prove that for any pair (E, I), where I satisfies conditions 1 and 2 but not condition 3 (from the
above definition of matroids), there exists a set of positive weights {wx}x∈E such that the Matroid Greedy
algorithm does not return a min-weight maximal independent set from I.

Part 4D. Prove that for any weighted matroid, the maximization version of the Matroid Greedy algorithm
(i.e. where at each step, a max-weight, instead of min-weight, element is added to the current independent
set) always outputs the max-weight independent set.

Problem 5 (Matroids: Applications). Having defined matroids and investigated their main algorithmic
property, you can now reap a well-deserved reward: You will now be able to show that two seemingly
disparate algorithms that you have learned in this class are instances of the Matroid Greedy algorithm.

Part 5A: Kruskal’s Algorithm For any graph G(V,E), its graphical matroid is defined to be the tuple
(E, I), where I consists of all acyclic subsets S ⊆ E of the edge set of G (i.e. if one were to remove from G
all edges in E − S, the remaining graph would be acyclic). First, show that the graphical matroid is indeed
a matroid. Then, demonstrate that Kruskal’s algorithm for finding MST in a weighted graph G(V,E) is an
instance of the Matroid Greedy minimization algorithm, as applied to the weighted graphical matroid of G.

Note: You may now wonder: is Prim’s algorithm also an instance of some generic greedy algorithm, or is it
custom-made for the particular problem of finding MST? It turns out it is indeed an instance of a general
greedy algorithm for greedoids, which further generalize matroids.

Part 5B: Unweighted Bipartite Matchings via Nice Paths Consider a bipartite graph G(V,E) with
V = (L,R). The transversal matroid of G is the tuple (L, I), where a subset of left-hand-side vertices S ⊆ L
belongs to I iff there exists a matching MS such that all vertices in S are matched in MS .

Now, recall Problem 5 from Problem Set 3. There, you analyzed an algorithm for finding maximum-size
matchings in unweighted bipartite graphs, which, at each step, increases the size of a tentative matching Mi

by 1 by flipping edges belonging/not belonging to Mi along an Mi-nice path (if such a path exists).

First, prove that the transversal matroid is indeed a matroid. As a hint, begin by considering any two
matchings M1,M2 with |M1| > |M2|, and building an M2-nice path starting in some vertex v ∈ L which is
covered by M1 but not M2. Then, show that the algorithm from Problem 5 on Problem Set 3 is just the
Matroid Greedy maximization algorithm with respect to the transversal matroid with all weights set to 1.

4

