
CIS 320 Problem Set 5

Due: Wednesday 11/24/21

Welcome to Problem Set 5. A few notes before you begin.

• You may collaborate with up to 4 other people. All work must be written up individually. You may
collaborate, but you cannot copy. E.g. you can talk to your friends about ideas for a problem together,
but you cannot copy their solution and just change some words around. List your collaborators at
the top of your submission.

• Googling or looking up solutions in any way is not allowed.

• Cheating is not worth it! Your grade in this course does not define your worth as a person, and in 10
years you will not care about your bad grade on a homework assignment. But you will care if you are
caught plagiarizing: plagiarizing has serious consequences, including the potential of expulsion.

• These problems are designed to challenge you. Start them early; if we’ve done our job well writing
them, you will have to chew on them for a while before finding the solutions, and that means you will
do best if you can sleep on your solutions rather than starting them the night before the due date.

• You do not need to implement anything in code. In fact, please do not. Pseudocode or a clear English
explanation of your algorithm are both acceptable: in some cases pseudocode may be clearer than
plain English, and in others the plain English might be better.

• If a question asks you to come up with an algorithm with a certain target runtime (say O(n log n)),
and you don’t know how to achieve this runtime but know how to solve the problem less efficiently
(in, say, Θ(n2) time), write that down! Depending on how inefficient your solution is compared to the
benchmark, it will receive a varying amount of credit.

• For each of our algorithm design questions, you should come up with a deterministic algorithm unless
the question specifies that a randomized algorithm is wanted.

• All analysis must be mathematically rigorous. Any answer you provide should be proven.

• Remember, we can’t evaluate your work if we can’t understand it. Communicating mathematical
and/or complex ideas is an important skill in computer science; treat your problem sets as practice.

• You should use LaTeX to typeset your solutions.

• Have fun!!

1



Problem 1 (Regretfully Random). In class, we derived the polynomial weights algorithm, which guarantees
that against any sequence of loss vectors, even a sequence chosen by an adversary the loss experienced by the
algorithm is no more than the loss of the best expert in hindsight, up to low order terms. But the polynomial
weights algorithm was randomized. In this problem, you will show that it is impossible to get the same
guarantees with any deterministic algorithm. Given a sequence of loss vectors, let OPT be the loss of the
best expert in hindsight. Show that for every deterministic algorithm operating in the experts setting, there
is a sequence of loss vectors that causes the algorithm to experience loss at least 2 ·OPT.

Problem 2. Recall that the (unweighted) s − t min-cut problem is to find the partition of the vertices of
a graph G = (V,E), V = A ∪ B such that s ∈ A and t ∈ B, so that the number of edges crossing between
A and B is minimized. Given a graph G, let P be the set of all paths between s and t, and consider the
following integer linear program I (i.e. a linear program in which the decision variables xe are constrained
to be integers):

Minimize
∑
e∈E

xe

subject to
∑
e∈p

xe ≥ 1, ∀p ∈ P

xe ∈ {0, 1}, ∀e ∈ E

(a) Prove that I solves the min-cut problem, and show how to efficiently recover the partition (A,B) from
the solution to I.

(b) In general, we can’t solve integer linear programs efficiently because of the constraint that the variables
take integer values, so consider the relaxation to the following linear program L, which no longer requires
that the decision variables xe be integers. It turns out that in this case, the optimal solution to L is the
same as the optimal solution to I (you’ll have to take our word for it, proving this is beyond the scope of
this class), so solving L is sufficient to solve the min-cut problem:

minimize
∑
e∈E

xe

subject to
∑
e∈p

xe ≥ 1, ∀p ∈ P

xe ≥ 0, ∀e ∈ E

We know how to solve linear programs efficiently, but this one might take awhile to write down: In terms of
the number of vertices n, how many constraints can L have in the worst case?

(c) Fortunately, to solve a linear program with the polynomial weights algorithm, we don’t need to write
down all of the constraints! We only need to be able to find the most violated constraint, given a candidate
solution. Give a polynomial time algorithm which given a candidate solution {xe} finds the most violated
constraint p — i.e. finds the p ∈ P that maximizes 1−

∑
e∈p xe.

Problem 3. In this problem, we will apply the Minimax Theorem to derive a powerful technique for proving
lower bounds on randomized algorithms called Yao’s Minimax Principle.

A) Consider some class of problems Π. Suppose that A1 is a finite collection of potential deterministic
algorithms for solving Π, suppose that A2 is a finite collection of possible inputs to an algorithm for Π.
Given an algorithm a ∈ A1 and an input b ∈ A2, let C(a, b) denote the cost of running algorithm a on input
b (the cost can be running time, some proxy for this like the number of comparisons made by a sorting
algorithm, or anything else). Consider a zero sum game in which the minimization player has action set A1

and the maximization player has action set A2, and the cost function is C. What does the min max value of
this game represent? How about the max min value?

b) Suppose that there is a distribution q over inputs A2 so that for every deterministic algorithm a ∈ A1

the expected cost of running a on an input b sampled from q is at least R. Prove that for every distribution

2



p over algorithms in A1, there is an input b ∈ A2 that causes the expected cost to be at least R, over the
randomness of sampling an algorithm from p.

c) Use this principle to show that our Ω(n log n) lower bound for comparison based sorting algorithms extends
to randomized algorithms: For every randomized comparison based sorting algorithm, there is an input that
causes it to make at least Ω(n log n) comparisons in expectation. You can assume here that a randomized
algorithm for sorting must always return the correct solution, the only thing that is uncertain is its running
time/number of comparisons made.

Problem 4. In this problem, we’ll use the minimax theorem to prove a basic result from decision theory.
Suppose there are some finite number of actions A you can take, and some finite number of “states” S that
the world can be in. Each action ai ∈ A has some payoff U(ai, sj) depending on which state sj ∈ S the
world is in. The problem is you don’t know the state of the world. You might have some belief about the
state of the world, in the form of a probability distribution q over states: in this case, you would pick an
action a∗(q) that would maximize your expected payoff given your belief about the world. Lets write

U(ai, q) =
∑
sj∈S

q(sj) · U(ai, sj)

for your expected payoff for playing action ai given your belief q about the states, and similarly, given a
distribution p ∈ ∆A over your actions, we’ll write:

U(p, sj) =
∑
ai∈A

p(ai) · U(ai, sj)

for your expected utility of playing an action at random from p if the state of the world is sj . In this notation:

a∗(q) ∈ arg max
ai∈A

U(ai, q).

Here q(sj) is the probability that the world is in state sj according to your belief, and p(ai) is the probability
that your distribution p places on action ai.

There might be some actions that are never a good idea to play, no matter what the state of the world.
Such actions are called strictly dominated actions. Formally, an action ai is strictly dominated if there exists
some other distribution over actions p that you could play that is always better than ai, no matter what the
state of the world. Formally, ai is strictly dominated if there exists a distribution over actions p ∈ ∆A such
that for every state sj ∈ S:

U(p, sj) > U(ai, sj).

Clearly there is no circumstance in which you should ever play a strictly dominated action. If ai is strictly
dominated by p, then no matter what the state of the world is, you would do better to play p instead of ai
— so even without information about the state of the world, you can eliminate ai from consideration.

Prove that this is the only case in which you would ever want to eliminate an action from consideration
without knowledge of the state of the world. Specifically, show that if an action ai is not strictly dominated,
then there exists a distribution over states q ∈ ∆S such that if your belief is q, then playing ai is optimal:

ai ∈ arg max
a∈A

U(a, q).

3


