
Name:

CIS 341 Midterm
October 20, 2008

1 /10

2 /10

3 /10

4 /10

5 /10

Total /50

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 7 pages in this exam.

• Make sure your name is on the top of this page.

1

1. Parsing
Consider the following grammar for OCaml-style types in which S is the only nonterminal and
the terminal tokens are taken from the set {int, bool, *, ->, (,)}.

S ::= int | bool | S * S | S -> S | (S)

We might implement the datatype of abstract syntax trees for this grammar using the following
OCaml code:

type ast =

| Int

| Bool

| Pair of ast * ast

| Arrow of ast * ast

a. Demonstrate that this grammar is ambiguous by giving two different abstract syntax trees
(OCaml values of type ast) that might be generated by parsing the input sequence:
int * int -> bool.

b. Write down the context-free grammar obtained by disambiguating the language above so
that: * associates to the left, -> associates to the right, and -> has lower precedence than *.

2

2. Intermediate code generation
Recall that our translation for while loops to the control-flow IL was:

[[while (e1) e2]] =

__lpre:

If([[e1]] != 0) __lbody __lpost

__lbody:

[[e2]];
Jump __lpre

__lpost:

Suppose we wanted to add support for C or Java-style commands break and continue. Remem-
ber that break terminates a loop body early (jumping to the exit point) and that continue stops
the current iteration, but returns to the top of the loop.

How would you modify the compilation function [[e]] to handle these new features? Show the
translations for while, continue, and break in the style shown above. Hint: think about how we
we compiled “short circuit” boolean expressions.

3

3. Calling Conventions
Consider the following C program:

int f(int x, int y) {

int z = x + y;

/* <--- here */

return z * z

}

int main() {

return f(341, 42);

}

Recall that on X86, ESP is the “stack pointer” and EBP is the “base pointer”. Assume that the
C compiler stack-allocates the local variable z and otherwise follows X86 C calling conventions.
Fill in the words of memory below (each box is one word) to show the stack as it looks when
the program reaches the point marked “here”. Use meaningful symbolic labels for any memory
addresses that might appear in the stack. Also indicate (using arrows) where in the stack the
registers ESP and EBP point. Note: you may not need all of the memory locations provided.

ESP

EBP

Lower addresses

Higher addresses

4

4. Closure Conversion
Recall that a closure is a pair where the first element is a data structure representing the environ-
ment and the second item is a pointer to code that takes an environment and a function argument
and evaluates the closure’s body. The following program contains three points marked (1), (2),
and (3) where closures will be built at runtime.

(1)fun x ->

let w = x * x in

(2)fun y -> (((3)fun z -> x + z + y) w)

a. Assuming that environments are represented as lists, what environment will be encapsulated
by the closure at each point? To help you out, below you will find a set of possible environ-
ments.

(1) Environment =
(2) Environment =
(3) Environment =

Possible environment lists:
A. [] B. [x; z] C. [x; x] D. [x; w]

E. [y; z] F. [x; y; z] G. [x; w; y] H. [x; w; y; z]

b. The code encapsulated in the closure at point (3) has the form Code(env, z, <body>).
Which of the following is the correct implementation of <body>?

A.
x + z + y

B.
let x = nth 0 env in

let w = nth 1 env in

((fun z -> x + z + y) w)

C.
let x = nth 0 env in

let y = nth 1 env in

let z = nth 2 env in

x + z + y

D.
let x = nth 0 env in

let w = nth 1 env in

let y = nth 2 env in

x + z + y

E.
let x = nth 0 env in

let w = nth 1 env in

let y = nth 2 env in

((fun z -> x + z + y) w)

5

5. Type Checking
Recall the simply-typed functional language we studied in class:

Abstract syntax of types:
T ::= int | T -> T

Abstract syntax of expressions:

e ::= i integer constants
| x variables
| e + e addition
| fun (x:T) -> e functions
| e e application

As a reminder, here are the typing rules for this language (the rule names are written [Rule]):

E ` i : int
[Int] x :T ∈ E

E ` x : T
[Var]

E ` e1 : int E ` e2 : int
E ` e1 + e2 : int

[Add]

E, x :T1 ` e : T2

E ` fun (x:T1) -> e : T1 -> T2
[Fun]

E ` e1 : T1 -> T2 E ` e2 : T1

E ` e1 e2 : T2
[App]

a. Complete the following derivation tree:

` 3 : int
[Int]

` 3 + ((fun (x:int) -> x + 2) 5) : int
[Add]

6

b. Consider extending the language with a simple exception mechanism. There are two new
expressions:

e ::= . . . stuff from before
| failwith e raise an exception carrying integer e
| try e handle(x)=> e exception handler

The expression “failwith e” can appear anywhere in a program. Its argument, e, is an
integer that is carried by the exception to the nearest enclosing exception handler. (If there is
no enclosing handler, the program aborts with error code e.)
The expression “try e1 handle(x) => e2” runs e1. If e1 raises no exception, the result of
the the try is just the result of e1. Otherwise, when e1 raises an exception carrying integer
i, the result of the try is the result of evaluating e2 with x bound to the value i, i.e. x’s scope
is the expression e2.
As an example, here are three well-typed programs:

3 + (failwith (2 + 5))

(fun (f:int->int) -> f 3) (failwith 4)

try (3 + (failwith (2 + 5))) handle(x)=> x + x

Complete the typing rules for these two new constructs (note that the return types in the
conclusions are missing—you should fill them in):

E ` failwith e :

E ` try e1 handle(x)=> e2 :

7

