
CIS 341: COMPILERS
Lecture 5

Announcements

•  Project 1: X86lite
–  Available on the course web pages.
–  Due: Thurs. January 31st

Zdancewic CIS 341: Compilers 2

LEXING

Zdancewic CIS 341: Compilers 3

Lexical analysis, tokens, regular expressions, automata

Compilation in a Nutshell

CIS 341: Compilers 4

Source Code���
(Character stream)
if (b == 0) a = 0;!

Backend
Assembly Code
CMP ECX, 0  
SETBZ EAX!

Abstract Syntax Tree:

Parsing

if

==

b 0

=

a 0

;
Intermediate

Code Generation

Intermediate
code:
__l1:!
if(#_t5 = 0) then  
 __l2 else __l3  
__l2:!
 #_t4 := 0!
 jump __l3!
__l3:!

Lexical Analysis
Token stream:

if! (! b! ==! 0!)! a! =! 0! ;!

Backend
Assembly Code
CMP ECX, 0  
SETBZ EAX!

Intermediate
Code Generation

Intermediate
code:
__l1:!
if(#_t5 = 0) then  
 __l2 else __l3  
__l2:!
 #_t4 := 0!
 jump __l3!
__l3:!

Abstract Syntax Tree:

Parsing

if

==

b 0

=

a 0

;

Today: Lexical Analysis

CIS 341: Compilers 5

Source Code���
(Character stream)
if (b == 0) a = 0;!

Lexical Analysis
Token stream:

if! (! b! ==! 0!)! a! =! 0! ;!

First Step: Lexical Analysis
•  Change the character stream “if (b == 0) a = 0;” into tokens:

 IF, LPAREN, IDENT(“b”), EQEQ, INT(0), RPAREN,
IDENT(“a”), EQ, INT(0), SEMI!

•  Token: data type that represents indivisible “chunks” of text:
–  Identifiers: a !y11! elsex _100!
–  Keywords: if else while!
–  Integers: 2 200 -500 5L!
–  Floating point: 2.0 .02 1e5!
–  Symbols: + * ` { } () ++ << >> >>>!
–  Strings: “x” “He said, \”Are you?\””!
–  Comments: (* CIS341: Project 1 … *)!

•  Often delimited by whitespace (‘ ‘, \t, etc.)

CIS 341: Compilers 6

if! (! b! ==! 0!)! a! =! 0! ;!

DEMO: HANDLEX

Zdancewic CIS 341: Compilers 7

How hard can it be?
handlex.ml

Lexing By Hand
•  How hard can it be?

–  Tedious and painful!

CIS 341: Compilers 8

•  Problems:
–  Precisely define tokens
–  Matching tokens simultaneously
–  Reading too much input (need look ahead)
–  Error handling
–  Hard to compose/interleave tokenizer code
–  Hard to maintain

Regular Expressions
•  Regular expressions precisely describe sets of strings.
•  A regular expression R has one of the following forms:

–  ε Epsilon stands for the empty string
–  ‘a’ An ordinary character stands for itself
–  R1 | R2 Alternatives, stands for choice of R1 or R2!
–  R1R2 Concatenation, stands for R1 followed by R2!
–  R* Kleene star, stands for zero or more repetitions of R!

•  Useful extensions:
–  “foo” Strings, equivalent to 'f''o''o'!
–  R+ One or more repetitions of R, equivalent to RR*!
–  R? Zero or one occurrences of R, equivalent to (ε|R)!
–  ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)!
–  [^'0'-'9'] Any character except 0 through 9!
–  R as x Name the string matched by R as x!

CIS 341: Compilers 9

Example Regular Expressions
•  Recognize the keyword “if”: ”if”!
•  Recognize a digit: ['0'-'9']
•  Recognize an integer literal: '-'?['0'-'9']+!
•  Recognize an identifier: ���

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-'Z'])*

•  In practice, it’s useful to be able to name regular expressions:

let lowercase = ['a'-'z']!
let uppercase = ['A'-'Z']!
let character = uppercase | lowercase!

CIS 341: Compilers 10

How to Match?
•  Consider the input string: ifx = 0!

–  Could lex as: or as:

•  Regular expressions alone are ambiguous, need a rule for choosing
between the options above

•  Most languages choose “longest match”
–  So the 2nd option above will be picked
–  Note that only the first option is “correct” for parsing purposes

•  Conflicts: arise due to two regular expressions with non-empty
intersection
–  Ties broken by giving some matches higher priority
–  Example: keywords have priority over identifiers
–  Usually specified by order the rules appear in the lex input file

CIS 341: Compilers 11

if! x! =! 0! ifx! =! 0!

Lexer Generators
•  Reads a list of regular expressions: R1,…,Rn , one per token.
•  Each token has an attached “action” Ai (just a piece of code to run

when the regular expression is matched):!

rule token = parse!
| '-'?digit+! ! !{ Int (Int32.of_string (lexeme lexbuf)) }!
| '+'! ! ! ! !{ PLUS }!
| 'if' ! ! ! !{ IF }!
| character (digit|character|'_')*!{ Ident (lexeme lexbuf) }!
| whitespace+ ! ! { token lexbuf }!

•  Generates scanning code that:
1.  Decides whether the input is of the form (R1|…|Rn)*
2.  Whenever the scanner matches a (longest) token, it runs the associated

action

CIS 341: Compilers 12

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 13

olex.mll

Finite Automata
•  Consider the regular expression: ‘”’[^’”’]’”’!
•  An automaton (DFA) can be represented as:

–  A transition table:

–  A graph:

CIS 341: Compilers 14

" Non-"

0 1 ERROR

1 2 1

2 ERROR ERROR

0	 1	 2	 "	 "	

Non-‐"	

RE to Finite Automaton?
•  Can we build a finite automaton for every regular expression?

–  Yes! Recall CIS 262 for the complete theory…

•  Strategy: consider every possible regular expression (by induction on
the structure of the regular expressions):

'a'!

ε	

R1R2!

CIS 341: Compilers 15

a!

R1! R2!??

What about?

R1|R2!

Nondeterministic Finite Automata
•  A finite set of states, a start state, and accepting state(s)
•  Transition arrows connecting states

–  Labeled by input symbols
–  Or ε (which does not consume input)

•  Nondeterministic: two arrows leaving the same state may have the
same label

CIS 341: Compilers 16

a!

b!

ε	

ε	

b!

a!
a!

RE to NFA?
•  Converting regular expressions to NFAs is easy.
•  Assume each NFA has one start state, unique accept state

CIS 341: Compilers 17

a!

R1! R2!ε	

‘a’!

ε	

R1R2!

RE to NFA (cont’d)
•  Sums and Kleene star are easy with NFAs

CIS 341: Compilers 18

R1!

R2!ε	

ε	

ε	

ε	

R1|R2!

R*!
R!

ε	
 ε	

ε	

ε	

DFA versus NFA
•  DFA:

–  Action of the automaton for each input is fully determined
–  Automaton accepts if the input is consumed upon reaching an accepting

state
–  Obvious table-based implementation

•  NFA:
–  Automaton potentially has a choice at every step
–  Automaton accepts an input string if there exists a way to reach an

accepting state
–  Less obvious how to implement efficiently

CIS 341: Compilers 19

NFA to DFA conversion (Intuition)
•  Idea: Run all possible executions of the NFA “in parallel”
•  Keep track of a set of possible states: “finite fingers”
•  Consider: -?[0-9]+!

•  NFA representation:

•  DFA representation:

CIS 341: Compilers 20

1	 2	 3	
[0-‐9]	 ε	

[0-‐9]	

0	

ε	

-‐	

{1}	

{2,3}	 {0,1}	

-‐	 [0-‐9]	

[0-‐9]	
[0-‐9]	

Summary of Lexer Generator Behavior
•  Take each regular expression Ri and it’s action Ai
•  Compute the NFA formed by (R1 | R2 | … | Rn)

–  Remember the actions associated with the accepting states of the Ri

•  Compute the DFA for this big NFA
–  There may be multiple accept states (why?)
–  A single accept state may correspond to one or more actions (why?)

•  Compute the minimal equivalent DFA
–  There is a standard algorithm due to Myhill & Nerode

•  Produce the transition table
•  Implement longest match:

–  Start from initial state
–  Follow transitions, remember last accept state entered (if any)
–  Accept input until no transition is possible (i.e. next state is “ERROR”)
–  Perform the highest-priority action associated with the last accept state; if

no accept state there is a lexing error

CIS 341: Compilers 21

Lexer Generators in Practice
•  Many existing implementations: lex, Flex, Jlex, ocamllex, …

–  For example ocamllex program
•  see lexlex.mll, olex.mll, piglatin.mll on course website

•  Error reporting:
–  Associate line number/character position with tokens
–  Use a rule to recognize ‘\n’ and increment the line number
–  The lexer generator itself usually provides character position info.

•  Sometimes useful to treat comments specially
–  Nested comments: keep track of nesting depth

•  Lexer generators are usually designed to work closely with parser
generators…

CIS 341: Compilers 22

DEMO: OCAMLLEX

Zdancewic CIS 341: Compilers 23

 lexlex.mll, olex.mll, piglatin.mll

