Lecture 7
CIS 341: COMPILERS

Announcements

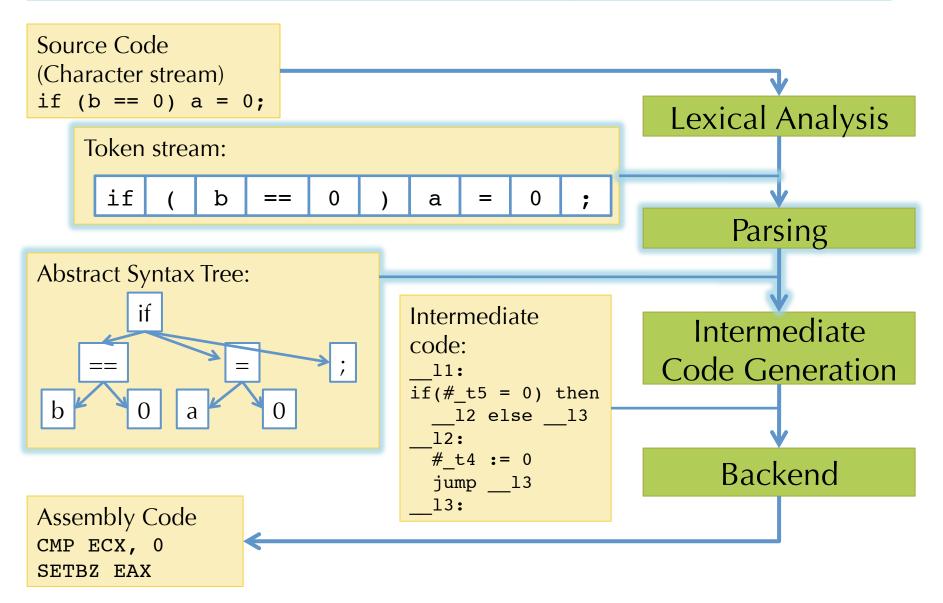
- Project 2: Parsing and Compiling Expressions
 - Due: Tuesday, Feb 12th at 11:59:59pm

Searching for derivations.

LL & LR PARSING

Zdancewic CIS 341: Compilers

Today: Parsing II



CIS 341: Compilers

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of productions: $LHS \mapsto RHS$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

$$\begin{array}{l} S\longmapsto (S)S\\ S\longmapsto \epsilon\end{array}$$

• How many terminals? How many nonterminals? Productions?

Consider finding left-most derivations

• Look at only one input symbol at a time.

 $S \longmapsto E + S \mid E$ E \low number | (S)

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\longmapsto \underline{\mathbf{E}} + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{S}}) + \mathbf{S}$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} + S) + S$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{E}}) + S$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})) + \mathbf{S}$	3	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{E}} + S)) + $	· S 3	(1 + 2 + (3 + 4)) + 5
$\longmapsto \dots$		

There is a problem

 $S \mapsto E + S \mid E$

 $E \mapsto number \mid (S)$

- We want to decide which production to apply based on the look-ahead symbol.
- But, there is a choice:

(1)
$$S \longmapsto E \longmapsto (S) \longmapsto (E) \longmapsto (1)$$

VS.

(1) + 2
$$S \longrightarrow E + S \longrightarrow (S) + S \longmapsto (E) + S \longmapsto (1) + S \longmapsto (1) + E \longrightarrow (1) + 2$$

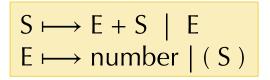
• Given the look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

LL(1) GRAMMARS

Zdancewic CIS 341: Compilers

Grammar is the problem

- Not all grammars can be parsed "top-down" with only a single lookahead symbol.
- *Top-down*: starting from the start symbol (root of the parse tree) and going down
- LL(1) means
 - Left-to-right scanning
 - Left-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?



• What can we do?

Making a grammar LL(1)

- *Problem:* We can't decide which S production to apply until we see the symbol after the first expression.
- *Solution: "*Left-factor" the grammar. There is a common S prefix for each choice, so add a new non-terminal S' at the decision point:

- Also need to eliminate left-recursion somehow. Why?
- Consider:

$$S \longmapsto S + E \mid E$$
$$E \longmapsto number \mid (S)$$

LL(1) Parse of the input string

• Look at only one input symbol at a time.

$$\begin{array}{l} S \longmapsto ES' \\ S' \longmapsto \epsilon \\ S' \longmapsto + S \\ E \longmapsto number \mid (S) \end{array}$$

Partly-derived String	Look-ahead	Parsed/Unparsed Input
<u>S</u>	((1 + 2 + (3 + 4)) + 5
$\longmapsto \underline{\mathbf{E}} S'$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{S}}) \ \mathbf{S}'$	1	(1 + 2 + (3 + 4)) + 5
$\longmapsto (\underline{\mathbf{E}} S') S'$	1	(1 + 2 + (3 + 4)) + 5
→ (1 <u>S'</u>) S'	+	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{S}}) \mathbf{S'}$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + \underline{\mathbf{E}} S') S'$	2	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 \mathbf{\underline{S'}}) \mathbf{S'}$	+	(1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{S}}) \mathbf{S'}$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + \underline{\mathbf{E}} S') S'$	((1 + 2 + (3 + 4)) + 5
$\longmapsto (1 + 2 + (\underline{\mathbf{S}})S') S'$	3	(1 + 2 + (3 + 4)) + 5

Predictive Parsing

- Given an LL(1) grammar:
 - For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table:
 nonterminal * input token → production

$$T \longmapsto S\$$$

$$S \longmapsto ES'$$

$$S' \longmapsto \varepsilon$$

$$S' \longmapsto + S$$

$$E \longmapsto number \mid (S)$$

	number	+	()	\$ (EOF)
Т	\longmapsto S\$		⊢→S\$		
S	$\mapsto E S'$		\mapsto ES'		
S'		$\mapsto + S$		$\longmapsto \epsilon$	$\longmapsto \epsilon$
Е	\mapsto num.		$\longmapsto (S)$		

• Note: it is convenient to add a special *end-of-file* token \$ and a start symbol T (top-level) that requires \$.

How do we construct the parse table?

- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ
 - Add the production $\rightarrow \gamma$ to the entry (A,token) for each such token.
- If γ can derive ε (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 - Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the grammar is not LL(1)

Example

• F	irst(T) = First	(S)		ſ	a.t	
• Fi	• First(S) = First(E)			$T \longmapsto S\$$		
• Fi	$irst(S') = \{ + \}$	}			$\begin{array}{c} S \longmapsto ES' \\ S' \longmapsto \epsilon \end{array}$	
• F	irst(E) = { nu	mber, '(' }			$\begin{array}{ccc} S & \longmapsto \varepsilon \\ S' & \longmapsto + S \end{array}$	
	、 <i>,</i> , _	, , ,			$E \mapsto nun$	nber (S)
• Fo	ollow(S') = F	ollow(S)		L		
	Follow(S) = { \$, ')' } U Follow(S')					
	、 <i>,</i> _	τ, , ,				
		Ŧ, , , ,				
				()	\$ (EOF)
		number	+	(⊢→\$\$)	\$ (EOF)
	T	number \mapsto S\$		$(\\ \mapsto S\$ \\ \mapsto F S'$)	\$ (EOF)
	T	number	+	$($ $\longmapsto S\$$ $\longmapsto E S'$		
	T	number \mapsto S\$))) ε	\$ (EOF) ⊢→ ε

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g. S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's. (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

	number	+	()	\$ (EOF)
Т	\longmapsto S\$		⊢→S\$		
S	$\mapsto E S'$		$\longmapsto E S'$		
S'		\mapsto + S		$\longmapsto \epsilon$	$\longmapsto \epsilon$
E	⊢→ num.		$\longmapsto (S)$		

Hand-generated LL(1) code for the table above.

DEMO: PARSER.ML

LL(1) Summary

- Top-down parsing that finds the leftmost derivation.
- Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursivedescent parser
- Problems:
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)
- Is there a better way?

LR GRAMMARS

Zdancewic CIS 341: Compilers

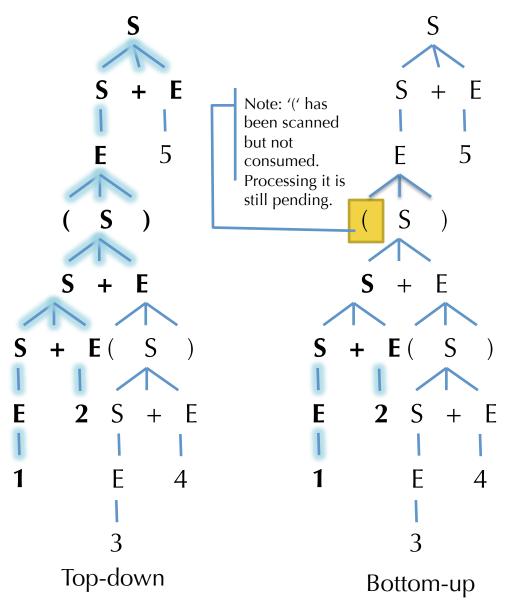
Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - Left-to-right scanning
 - <u>R</u>ightmost derivation
 - k lookahead symbols
- LR grammars are more expressive than LL
 - Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, CUP, ocamlyacc, etc.)
 - Better error detection/recovery

Top-down vs. Bottom up

• Consider the leftrecursive grammar:

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just (1 + 2
- In top-down, must be able to guess which productions to use...



Progress of Bottom-up Parsing

Rightmost derivation

Reductions	Scanned
$(1 + 2 + (3 + 4)) + 5 \longleftarrow$	
$(\underline{\mathbf{E}} + 2 + (3 + 4)) + 5 \longleftarrow$	(
$(\underline{\mathbf{S}} + 2 + (3 + 4)) + 5 \longleftarrow$	(1
$(\mathbf{S} + \mathbf{\underline{E}} + (3 + 4)) + 5 \longleftarrow$	(1 + 2
$(\underline{\mathbf{S}} + (3 + 4)) + 5 \longleftarrow$	(1 + 2
$(S + (\underline{E} + 4)) + 5 \longleftarrow$	(1 + 2 + (
$(S + (\underline{S} + 4)) + 5 \longleftarrow$	(1 + 2 + (
$(S + (S + \underline{E})) + 5 \longleftarrow$	(1 + 2 + (
$(S + (\underline{S})) + 5 \longleftarrow$	(1 + 2 + (
$(\mathbf{S} + \mathbf{\underline{E}}) + 5 \longleftarrow$	(1 + 2 + (
(<u>S</u>) + 5 ← −	(1 + 2 + (
<u>E</u> + 5 ← →	(1 + 2 + (
<u>S</u> + 5 ← →	(1 + 2 + (
S + <u>E</u> ← →	(1 + 2 + (
S	

nned	Input Remaining
	(1 + 2 + (3 + 4)) +
	+2+(3+4))+5
	+2+(3+4))+5
- 2	+(3+4))+5
- 2	+(3+4))+5
-2 + (3)	+ 4)) + 5
-2 + (3)	+ 4)) + 5
-2 + (3 + 4))) + 5
-2 + (3 + 4))) + 5
-2 + (3 + 4)) + 5
-2 + (3 + 4)) + 5
(2 + (3 + 4))	+ 5
(2 + (3 + 4))	+ 5
(2 + (3 + 4)) + 5	

 $S \longmapsto S + E \mid E$ $E \mapsto number \mid (S)$

+ 5

21

Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack
- Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X)

Stack	Input	Action
	(1 + 2 + (3 + 4)) + 5	shift (
(1 + 2 + (3 + 4)) + 5	shift 1
(1	+2+(3+4))+5	reduce: $E \mapsto number$
(E	+2+(3+4))+5	reduce: $S \mapsto E$
(S	+2+(3+4))+5	shift +
(S +	2 + (3 + 4)) + 5	shift 2
(S + 2	+(3+4))+5	reduce: $E \mapsto number$

 $S \longmapsto S + E \mid E$ $E \mapsto number \mid (S)$

Simple LR parsing with no look ahead.

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- Idea: Summarize all possible stack prefixes α as a finite parser state.
 - Parser state is computed by a DFA that reads the stack $\boldsymbol{\sigma}.$
 - Accept states of the DFA correspond to unique reductions that apply.
- Example: LR(0) parsing
 - <u>L</u>eft-to-right scanning, <u>R</u>ight-most derivation, <u>zero</u> look-ahead tokens
 - Too weak to handle many language grammars (e.g. the "sum" grammar)
 - But, helpful for understanding how the shift-reduce parser works.

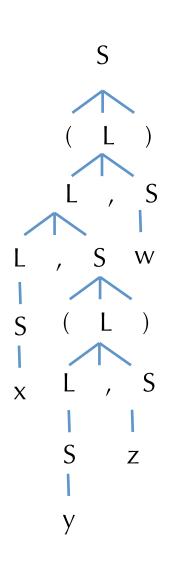
Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

 $\begin{array}{c|c} S \longmapsto (L) & | & id \\ L \longmapsto S & | & L, S \end{array}$

- Example strings:
 - x
 - (x,y)
 - ((((x))))
 - (x, (y, z), w)
 - (x, (y, (z, w)))

Parse tree for: (x, (y, z), w)



Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack: e.g.

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that X $\mapsto \gamma$ is a production. (pop γ , push X): e.g.

Stack	Input	Action
(x	, (y, z), w)	reduce $S \mapsto id$
(S	, (y, z), w)	reduce $L \mapsto S$

 $S \mapsto (L) \mid id$

 $L \mapsto S \mid L, S$

Example Run

Stack	Input	Action
	(x, (y, z), w)	shift (
(x, (y, z), w)	shift x
(x	, (y, z), w)	reduce $S \mapsto id$
(S	, (y, z), w)	reduce $L \mapsto S$
(L	, (y, z), w)	shift ,
(L,	(y, z), w)	shift (
(L, (y, z), w)	shift y
(L, (y	, z), w)	reduce $S \mapsto id$
(L, (S	, z), w)	reduce $L \mapsto S$
(L, (L	, z), w)	shift ,
(L, (L,	z), w)	shift z
(L, (L, z), w)	reduce $S \mapsto id$
(L, (L, S), w)	reduce $L \mapsto L$, S
(L, (L), w)	shift)
(L, (L)	, w)	reduce $S \mapsto (L)$
(L, S	, W)	reduce $L \mapsto L$, S
CIS 34 (Compilers	, w)	shift ,
(L,	W)	shift w
(1)/		reduce $S \longrightarrow id$

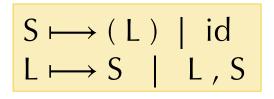
$$\begin{array}{c|c} S \longmapsto (L) & | & id \\ L \longmapsto S & | & L, S \end{array}$$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σ b)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \varepsilon$ can *always* be reduced
- Sometimes the stack can be reduced in different ways
- Main idea: decide what to do based on a *prefix* α of the stack plus the look-ahead symbol.
 - The prefix a is different for different possible reductions since in productions $X \mapsto g$ and $Y \mapsto b$, g and b might have different lengths.
- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?

LR(0) States

- An LR(0) *state* is a *set* of *items* keeping track of progress on possible upcoming reductions.
- An LR(0) *item* is a production from the language with an extra separator "." somewhere in the right-hand-side



- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition:
 - Stuff before the '.' is already on the stack
 - (beginnings of possible γ 's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ to the grammar
- Start state of the DFA = empty stack, so it contains the item:

 $S' \mapsto .S\$$

- Closure of a state:
- te: or all productions whose LHS ponterminal occurs in an item

 $S' \mapsto S$

 $S \mapsto (L) \mid id$

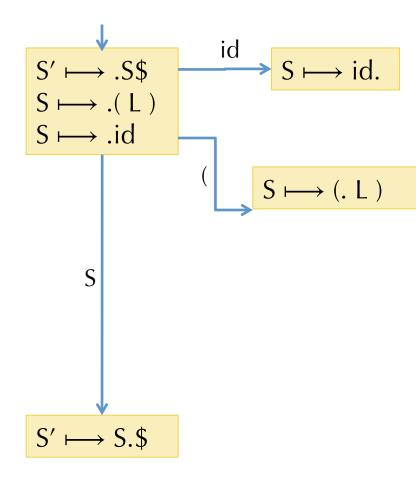
 $L \mapsto S \mid L, S$

- Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the '.'
- The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
- Note that newly added items may cause yet more items to be added to the state... keep iterating until a *fixed point* is reached.
- Example: $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id$
- Resulting "closed state" contains the set of all possible productions that might be reduced next.

• First, we construct a state with the initial item $S' \mapsto .S$

- Next, we take the closure of that state: $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id}$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar

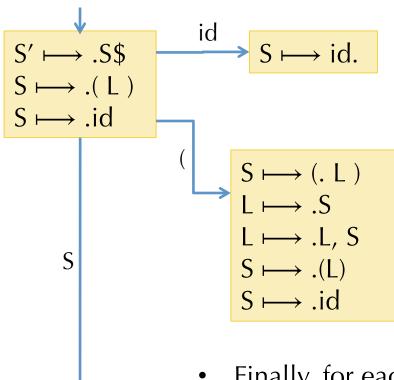
Example: Constructing the DFA

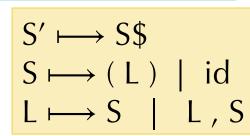


$$\begin{array}{c} S'\longmapsto S\$\\ S\longmapsto (L) \mid id\\ L\longmapsto S \mid L, S\end{array}$$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)

Example: Constructing the DFA

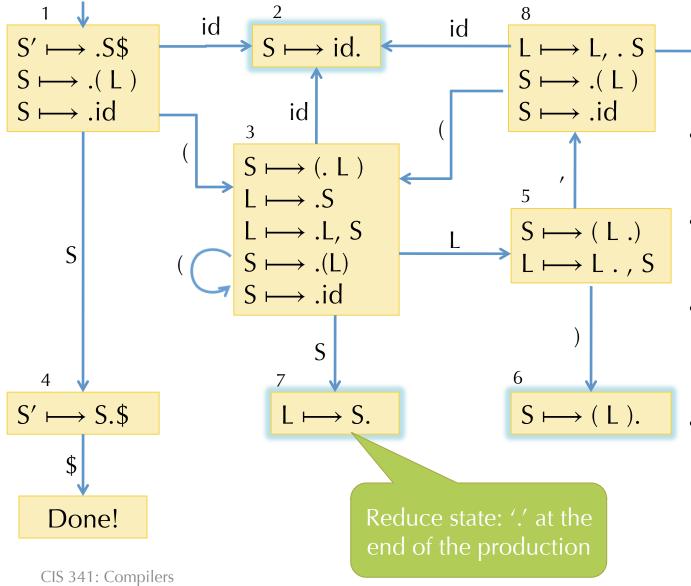




- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute $CLOSURE({S \longmapsto (. L)})$
 - First iteration adds $L \mapsto .S$ and $L \mapsto .L$, S
 - Second iteration adds $S \mapsto .(L)$ and $S \mapsto .id$

 $S' \mapsto S.$

Full DFA for the Example



$$F \longrightarrow L \longmapsto L, S.$$

9

- Current state: run the DFA on the stack.
- If a reduce state is reached, reduce
- Otherwise, if the next token matches an outgoing edge, shift.
- If no such transition, it is a parse error.