
CIS 341: COMPILERS
Lecture 7

Announcements

•  Project 2: Parsing and Compiling Expressions
–  Due: Tuesday, Feb 12th at 11:59:59pm

Zdancewic CIS 341: Compilers 2

LL & LR PARSING

Zdancewic CIS 341: Compilers 3

Searching for derivations.

Backend
Assembly Code
CMP ECX, 0  
SETBZ EAX"

Intermediate
Code Generation

Intermediate
code:
__l1:"
if(#_t5 = 0) then  
 __l2 else __l3  
__l2:"
 #_t4 := 0"
 jump __l3"
__l3:"

Abstract Syntax Tree:

Parsing

if

==

b 0

=

a 0

;

Today: Parsing II

CIS 341: Compilers 4

Source Code���
(Character stream)
if (b == 0) a = 0;"

Lexical Analysis
Token stream:

if" (" b" ==" 0")" a" =" 0" ;"

CFGs Mathematically
•  A Context-free Grammar (CFG) consists of

–  A set of terminals (e.g., a token or ε)
–  A set of nonterminals (e.g., S and other syntactic variables)
–  A designated nonterminal called the start symbol
–  A set of productions: LHS ⟼ RHS

•  LHS is a nonterminal
•  RHS is a string of terminals and nonterminals

•  Example: The balanced parentheses language:

•  How many terminals? How many nonterminals? Productions?���

CIS 341: Compilers 5

S ⟼ (S)S

S ⟼ ε	

Consider finding left-most derivations
•  Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input���
S ((1 + 2 + (3 + 4)) + 5���
⟼ E + S ((1 + 2 + (3 + 4)) + 5���
⟼ (S) + S 1 (1 + 2 + (3 + 4)) + 5���
⟼ (E + S) + S 1 (1 + 2 + (3 + 4)) + 5���
⟼ (1 + S) + S 2 (1 + 2 + (3 + 4)) + 5���
⟼ (1 + E + S) + S 2 (1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + S) + S ((1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + E) + S ((1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + (S)) + S 3 (1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + (E + S)) + S 3 (1 + 2 + (3 + 4)) + 5���
⟼ …

CIS 341: Compilers 6

S ⟼ E + S | E
E ⟼ number | (S)

There is a problem
•  We want to decide which production���

to apply based on the look-ahead symbol.
•  But, there is a choice:���

(1) S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1)
vs.���

(1) + 2 S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E
 ⟼ (1) + 2

•  Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick ���
S ⟼ E or S ⟼ E + S first.

CIS 341: Compilers 7

S ⟼ E + S | E
E ⟼ number | (S)

LL(1) GRAMMARS

Zdancewic CIS 341: Compilers 8

Grammar is the problem
•  Not all grammars can be parsed “top-down” with only a single

lookahead symbol.
•  Top-down: starting from the start symbol (root of the parse tree) and

going down

•  LL(1) means
–  Left-to-right scanning
–  Left-most derivation,
–  1 lookahead symbol

•  This language isn’t “LL(1)”
•  Is it LL(k) for some k?

•  What can we do?

CIS 341: Compilers 9

S ⟼ E + S | E
E ⟼ number | (S)

Making a grammar LL(1)
•  Problem: We can’t decide which S production to apply until we see

the symbol after the first expression.
•  Solution: “Left-factor” the grammar. There is a common S prefix for

each choice, so add a new non-terminal S’ at the decision point:

•  Also need to eliminate left-recursion somehow. Why?
•  Consider:

CIS 341: Compilers 10

S ⟼ E + S | E
E ⟼ number | (S)

S ⟼ S + E | E
E ⟼ number | (S)

S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

LL(1) Parse of the input string
•  Look at only one input symbol at a time.

Partly-derived String Look-ahead Parsed/Unparsed Input���
S ((1 + 2 + (3 + 4)) + 5���
⟼ E S’ ((1 + 2 + (3 + 4)) + 5���
⟼ (S) S’ 1 (1 + 2 + (3 + 4)) + 5���
⟼ (E S’) S’ 1 (1 + 2 + (3 + 4)) + 5���
⟼ (1 S’) S’ + (1 + 2 + (3 + 4)) + 5���
⟼ (1 + S) S’ 2 (1 + 2 + (3 + 4)) + 5���
⟼ (1 + E S’) S’ 2 (1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 S’) S’ + (1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + S) S’ ((1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + E S’) S’ ((1 + 2 + (3 + 4)) + 5���
⟼ (1 + 2 + (S)S’) S’ 3 (1 + 2 + (3 + 4)) + 5

CIS 341: Compilers 11

S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

Predictive Parsing
•  Given an LL(1) grammar:

–  For a given nonterminal, the lookahead symbol uniquely determines the
production to apply.

–  Top-down parsing = predictive parsing
–  Driven by a predictive parsing table: ���

 nonterminal * input token → production

•  Note: it is convenient to add a special end-of-file token $ and a start
symbol T (top-level) that requires $.

CIS 341: Compilers 12

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

How do we construct the parse table?
•  Consider a given production: A γ
•  Construct the set of all input tokens that may appear first in strings

that can be derived from γ
–  Add the production γ to the entry (A,token) for each such token.

•  If γ can derive ε (the empty string), then we construct the set of all
input tokens that may follow the nonterminal A in the grammar.
–  Add the production γ to the entry (A, token) for each such token.

•  Note: if there are two different productions for a given entry, the
grammar is not LL(1)

CIS 341: Compilers 13

Example
•  First(T) = First(S)
•  First(S) = First(E)
•  First(S’) = { + }
•  First(E) = { number, ‘(‘ }

•  Follow(S’) = Follow(S)
•  Follow(S) = { $, ‘)’ } ∪ Follow(S’)

Zdancewic CIS 341: Compilers 14

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

Converting the table to code
•  Define n mutually recursive functions

–  one for each nonterminal A: parse_A
–  The type of parse_A is unit -> ast if A is not an auxiliary nonterminal
–  Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as

inputs, one for each nonterminal in the “factored” prefix.

•  Each function “peeks” at the lookahead token and then follows the
production rule in the corresponding entry.
–  Consume terminal tokens from the input stream
–  Call parse_X to create sub-tree for nonterminal X
–  If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.

(The auxiliary rule is responsible for creating the ast after looking at more
input.)

–  Otherwise, this function builds the ast tree itself and returns it.

CIS 341: Compilers 15

DEMO: PARSER.ML

Zdancewic CIS 341: Compilers 16

Hand-generated LL(1) code for the table above.

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

LL(1) Summary
•  Top-down parsing that finds the leftmost derivation.
•  Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-

descent parser

•  Problems:
–  Grammar must be LL(1)
–  Can extend to LL(k) (it just makes the table bigger)
–  Grammar cannot be left recursive (parser functions will loop!)

•  Is there a better way?

CIS 341: Compilers 17

LR GRAMMARS

Zdancewic CIS 341: Compilers 18

Bottom-up Parsing (LR Parsers)
•  LR(k) parser:

–  Left-to-right scanning
–  Rightmost derivation
–  k lookahead symbols

•  LR grammars are more expressive than LL
–  Can handle left-recursive (and right recursive) grammars; virtually all

programming languages
–  Easier to express programming language syntax (no left factoring)

•  Technique: “Shift-Reduce” parsers
–  Work bottom up instead of top down
–  Construct right-most derivation of a program in the grammar
–  Used by many parser generators (e.g. yacc, CUP, ocamlyacc, etc.)
–  Better error detection/recovery

CIS 341: Compilers 19

Top-down vs. Bottom up
•  Consider the left-���

recursive grammar:

•  (1 + 2 + (3 + 4)) + 5

•  What part of the���
tree must we ���
know after scanning���
just (1 + 2

•  In top-down, must���
be able to guess���
which productions���
to use…

CIS 341: Compilers 20

4

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3

S

S + E

E 5

S + E

1

S + E

E 2

(S)

E 4

(S)

S + E

3
Top-down Bottom-up

Note: ‘(‘ has
been scanned
but not
consumed.
Processing it is
still pending.

S ⟼ S + E | E
E ⟼ number | (S)

Progress of Bottom-up Parsing
Reductions Scanned Input Remaining
(1 + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(E + 2 + (3 + 4)) + 5 ⟻ (+ 2 + (3 + 4)) + 5
(S + 2 + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (3 + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (E + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + 4)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S + E)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + (S)) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S + E) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
(S) + 5 ⟻ (1 + 2 + (3 + 4)) + 5
E + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + 5 ⟻ (1 + 2 + (3 + 4)) + 5
S + E ⟻ (1 + 2 + (3 + 4)) + 5
S

CIS 341: Compilers 21

S ⟼ S + E | E
E ⟼ number | (S)

R
ig

ht
m

os
t d

er
iv

at
io

n

Shift/Reduce Parsing
•  Parser state:

–  Stack of terminals and nonterminals.
–  Unconsumed input is a string of terminals
–  Current derivation step is stack + input

•  Parsing is a sequence of shift and reduce operations:
•  Shift: move look-ahead token to the stack
•  Reduce: Replace symbols γ at top of stack with nonterminal X such

that X ⟼ γ is a production. (pop γ, push X)
Stack Input Action

 (1 + 2 + (3 + 4)) + 5 shift (
(1 + 2 + (3 + 4)) + 5 shift 1
(1 + 2 + (3 + 4)) + 5 reduce: E ⟼ number
(E + 2 + (3 + 4)) + 5 reduce: S ⟼ E
(S + 2 + (3 + 4)) + 5 shift +
(S + 2 + (3 + 4)) + 5 shift 2
(S + 2 + (3 + 4)) + 5 reduce: E ⟼ number

CIS 341: Compilers 22

S ⟼ S + E | E
E ⟼ number | (S)

LR(0) GRAMMARS

Zdancewic CIS 341: Compilers 23

Simple LR parsing with no look ahead.

LR Parser States
•  Goal: know what set of reductions are legal at any given point.
•  Idea: Summarize all possible stack prefixes α as a finite parser state.

–  Parser state is computed by a DFA that reads the stack σ.
–  Accept states of the DFA correspond to unique reductions that apply.

•  Example: LR(0) parsing
–  Left-to-right scanning, Right-most derivation, zero look-ahead tokens
–  Too weak to handle many language grammars (e.g. the “sum” grammar)
–  But, helpful for understanding how the shift-reduce parser works.

CIS 341: Compilers 24

Example LR(0) Grammar: Tuples
•  Example grammar for non-empty tuples and identifiers:

•  Example strings:
–  x
–  (x,y)
–  ((((x))))
–  (x, (y, z), w)
–  (x, (y, (z, w)))

CIS 341: Compilers 25

S ⟼ (L) | id
L ⟼ S | L , S

Parse tree for:
(x, (y, z), w)

(L)

L , S

L , S

(L)

L , S x

S

y

S z

w

S

Shift/Reduce Parsing
•  Parser state:

–  Stack of terminals and nonterminals.
–  Unconsumed input is a string of terminals
–  Current derivation step is stack + input

•  Parsing is a sequence of shift and reduce operations:
•  Shift: move look-ahead token to the stack: e.g.

Stack Input Action
 (x, (y, z), w) shift (

(x, (y, z), w) shift x

•  Reduce: Replace symbols γ at top of stack with nonterminal X such
that X ⟼ γ is a production. (pop γ, push X): e.g.
 Stack Input Action

(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S

CIS 341: Compilers 26

S ⟼ (L) | id
L ⟼ S | L , S

Example Run
Stack Input Action

 (x, (y, z), w) shift (
(x, (y, z), w) shift x
(x , (y, z), w) reduce S ⟼ id
(S , (y, z), w) reduce L ⟼ S
(L , (y, z), w) shift ,
(L, (y, z), w) shift (
(L, (y, z), w) shift y
(L, (y , z), w) reduce S ⟼ id
(L, (S , z), w) reduce L ⟼ S
(L, (L , z), w) shift ,
(L, (L, z), w) shift z
(L, (L, z), w) reduce S ⟼ id
(L, (L, S), w) reduce L ⟼ L, S
(L, (L), w) shift)
(L, (L) , w) reduce S ⟼ (L)
(L, S , w) reduce L ⟼ L, S
(L , w) shift ,
(L, w) shift w
(L, w) reduce S ⟼ id

CIS 341: Compilers 27

S ⟼ (L) | id
L ⟼ S | L , S

Action Selection Problem
•  Given a stack σ and a look-ahead symbol b, should the parser:

–  Shift b onto the stack (new stack is σb)
–  Reduce a production X ⟼ γ, assuming that σ = αγ (new stack is αX)?

•  Sometimes the parser can reduce but shouldn’t
–  For example, X ⟼ ε can always be reduced

•  Sometimes the stack can be reduced in different ways

•  Main idea: decide what to do based on a prefix α of the stack plus the
look-ahead symbol.
–  The prefix a is different for different possible reductions since in

productions X ⟼ g and Y ⟼ b, g and b might have different lengths.

•  Main goal: know what set of reductions are legal at any point.
–  How do we keep track?

CIS 341: Compilers 28

LR(0) States
•  An LR(0) state is a set of items keeping track of progress on possible

upcoming reductions.
•  An LR(0) item is a production from the language with an extra

separator “.” somewhere in the right-hand-side

•  Example items: S ⟼ .(L) or S ⟼ (. L) or L ⟼ S.
•  Intuition:

–  Stuff before the ‘.’ is already on the stack���
(beginnings of possible γ’s to be reduced)

–  Stuff after the ‘.’ is what might be seen next
–  The prefixes α are represented by the state itself

CIS 341: Compilers 29

S ⟼ (L) | id
L ⟼ S | L , S

Constructing the DFA: Start state & Closure
•  First step: Add a new production ���

S’ ⟼ S$ to the grammar
•  Start state of the DFA = empty stack, ���

so it contains the item:���
 S’ ⟼ .S$

•  Closure of a state:
–  Adds items for all productions whose LHS nonterminal occurs in an item

in the state just after the ‘.’
–  The added items have the ‘.’ located at the beginning (no symbols for

those items have been added to the stack yet)
–  Note that newly added items may cause yet more items to be added to the

state… keep iterating until a fixed point is reached.

•  Example: CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

•  Resulting “closed state” contains the set of all possible productions
that might be reduced next.

CIS 341: Compilers 30

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

Example: Constructing the DFA

•  First, we construct a state with the initial item S’ ⟼ .S$

CIS 341: Compilers 31

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$

Example: Constructing the DFA

•  Next, we take the closure of that state:���
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .(L), S ⟼ .id}

•  In the set of items, the nonterminal S appears after the ‘.’
•  So we add items for each S production in the grammar

CIS 341: Compilers 32

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

Example: Constructing the DFA

•  Next we add the transitions:
•  First, we see what terminals and

nonterminals can appear after the
‘.’ in the source state.
–  Outgoing edges have those label.

•  The target state (initially) includes
all items from the source state that
have the edge-label symbol after
the ‘.’, but we advance the ‘.’ (to
simulate shifting the item onto the
stack)

CIS 341: Compilers 33

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA

•  Finally, for each new state, we take the closure.
•  Note that we have to perform two iterations to compute

CLOSURE({S ⟼ (. L)})
–  First iteration adds L ⟼ .S and L ⟼ .L, S
–  Second iteration adds S ⟼ .(L) and S ⟼ .id

CIS 341: Compilers 34

S’ ⟼ S$
S ⟼ (L) | id
L ⟼ S | L , S

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Full DFA for the Example

CIS 341: Compilers 35

S’ ⟼ .S$
S ⟼ .(L)
S ⟼ .id

S ⟼ (. L)
L ⟼ .S
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .(L)
S ⟼ .id

L ⟼ L, S.

S ⟼ (L .)
L ⟼ L . , S

S ⟼ (L). L ⟼ S. S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the
end of the production

•  Current state: run the���
 DFA on the stack.

•  If a reduce state is ���
 reached, reduce���

•  Otherwise, if the next���
 token matches an ���
 outgoing edge, shift.

•  If no such transition,���
 it is a parse error.

1 2

3

4

5

6 7

8 9

