
CIS 341: COMPILERS
Lecture 9

Announcements

•  Project 2: Parsing and Compiling Expressions
–  Due: Tonight at 11:59:59

•  Project 3: Compiling Control Flow
–  Available soon

Zdancewic CIS 341: Compilers 2

INTERMEDIATE
REPRESENTATIONS

Zdancewic CIS 341: Compilers 3

Backend
Assembly Code
CMP ECX, 0  
SETBZ EAX"

Intermediate
Code Generation

Intermediate
code:
__l1:"
if(#_t5 = 0) then  
 __l2 else __l3  
__l2:"
 #_t4 := 0"
 jump __l3"
__l3:"

Abstract Syntax Tree:

Parsing

if

==

b 0

=

a 0

;

Today: Intermediate Representations

CIS 341: Compilers 4

Source Code���
(Character stream)
if (b == 0) a = 0;"

Lexical Analysis
Token stream:

if" (" b" ==" 0")" a" =" 0" ;"

Directly Translating AST to Assembly
•  For simple languages, no need for intermediate representation.

–  e.g. the “boolean” language from earlier, or the language of Project 2

•  Main Idea: Maintain invariants
–  e.g. Code emitted for a given expression computes the answer into Eax

•  Key Challenges (for Project 2):
–  storing intermediate values needed to compute complex expressions
–  some instructions use specific registers (e.g. shift)
–  logic operations evaluate to exactly 0 or 1

CIS 341: Compilers 5

One Simple Strategy
•  Compilation is the process of “emitting” instructions into an

instruction stream.
•  To compile an expression, we recursively compile sub expressions

and then process the results.
•  Invariants:

–  Compilation of an expression yields its result in Eax
–  Arg (X) is stored in a dedicated register Edx
–  Intermediate values are pushed onto the stack (we can’t easily use

registers – why?)
–  Stack slot is popped after use (so the space is reclaimed)

•  Resulting code is wrapped to comply with cdecl calling conventions:
–  Edx is initialized with the value of X from the stack

•  [DEMO] See the compiler.ml for example code.

CIS 341: Compilers 6

Why do something else?
•  This is a simple syntax-directed translation

–  Input syntax uniquely determines the output, no complex analysis
or code transformation is done.

–  It works fine for simple languages.

But…
•  The resulting code quality is poor.
•  It’s hard to do optimizations on the resulting assembly

code.
–  The representation is too concrete – e.g. it has committed to using

certain registers and the stack

•  Retargeting the compiler to a new architecture is hard.
–  Target assembly code is hard-wired into the translation

CIS 341: Compilers 7

Intermediate Representations (IR’s)
•  Abstract machine code: hides details of the target architecture
•  Allows machine independent code generation and optimization.

CIS 341: Compilers 8

AST	 IR	

x86	

Java	
Byte-‐
code	

Arm	 Op9miza9on	

Multiple IR’s
•  Goal: get program closer to machine code without losing information

needed to do optimizations
•  In practice, multiple intermediate representations���

might be used (for different purposes)

CIS 341: Compilers 9

AST	 MIR	

x86	

Java	
Byte-‐
code	

Arm	

Op9miza9on	

HIR	

Op9miza9on	 Op9miza9on	

What makes a good IR?
•  Easy translation target (from the level above)
•  Easy to translate (to the level below)
•  Narrow interface

–  Fewer constructs means simpler phases/optimizations

•  Example: Source level AST might have “while”, “for”, and “do” loops
(and maybe more variants)
–  IR might have only “while” loops and sequencing
–  Translation eliminates “for” and “do”

–  Here	 the	 nota9on	 ⟦exp⟧	 denotes	 the	 “transla9on”	 or	 “compila9on”	 of	 exp"

CIS 341: Compilers 10

⟦for(pre; cond; post) {body}⟧	
	 =	 	

	 	 	 ⟦pre; while(cond) {body;post}⟧	

IR’s at the extreme
•  High-level IR’s

–  AST + new node types not generated by the parser
•  e.g. Type checking information or disambiguated syntax nodes

–  Typically preserves the high-level language constructs
•  Structured control flow, variable names, methods, functions, etc.
•  May do some simplification (e.g. convert for to while)

–  Allows high-level optimizations based on program structure
•  e.g. inlining “small” functions, reuse of constants, etc.

–  Useful for semantic analyses like type checking

•  Low-level IR’s
–  Machine dependent assembly code + extra pseudo-instructions

•  e.g. a pseudo instruction for interfacing with garbage collector or memory allocator
(parts of the language runtime system)

•  e.g. (on x86) a MUL instruction that doesn’t restrict register usage
–  Source structure of the program is lost:

•  Translation to assembly code is trivial
–  Allows low-level optimizations based on target architecture

•  e.g. instruction selection, memory layout, etc.

•  What’s in between?

CIS 341: Compilers 11

Mid-level IR’s: Many Varieties
•  Intermediate between AST and assembly
•  May have unstructured jumps, abstract registers or memory locations
•  Convenient for translation to high-quality machine code

–  Example: all intermediate values might be named to facilitate
optimizations that attempt to minimize stack/register usage

•  Many examples:
–  Triples: OP a b

•  Useful for instruction selection on X86 via “tiling”

–  Quadruples: a = b OP c (“three address form”)
–  SSA: variant of quadruples where each variable is assigned exactly once

•  Easy dataflow analysis for optimization
•  e.g. LLVM: industrial-strength IR, based on SSA

–  Stack-based:
•  Easy to generate
•  e.g. Java Bytecode, UCODE

CIS 341: Compilers 12

Two Example IR’s
•  Two example IR’s in more detail… starting from the very basic.

•  A (very) simple intermediate representation for the arithmetic language
–  Very high level
–  No control flow
–  See: ssa.ml in lec11.zip

•  A simple subset of the LLVM IR
–  LLVM = “Low-level Virtual Machine”
–  Used in Projects 3+

CIS 341: Compilers 13

SIMPLE LET-BASED IR

Zdancewic CIS 341: Compilers 14

Eliminating Nested Expressions
•  Fundamental problem:

–  Compiling complex & nested expression forms to simple operations.

 IR

•  Idea: name intermediate values, make order of evaluation explicit.
–  No nested operations.

CIS 341: Compilers 15

((1 + 2) + (3 + (X + 5)))"

Plus(Plus(Int 1, Int2),  
 Plus(Int 3, Plus(Arg,  
 Int 5)))"

Source

AST

?

Simple Let Language SLL

tmp // names for temporary values
imm // 32-bit integer values
exp ::= tmp | imm!
op ::= Add(exp, exp)"
"" "| GetArg
 | …	 	 	 // no nested operations

cmd ::= let tmp = op in cmd
 | return exp"

Basic idea: restrict the language so that it can only express simple
sequences of non-nested expressions.

OCaml-like syntax for ease of reading.

CIS 341: Compilers 16

Translation to SLL
•  Given this:

•  Translate to this desired SLL form:

"" " " "let tmp0 = Add(1, 2) in"
"" " " "let tmp1 = GetArg in"
"" " " "let tmp2 = Add(tmp1, 5) in"
"" " " "let tmp3 = Add(3, tmp2) in"
"" " " "let tmp4 = Add(tmp0, tmp3) in"

 "" " " " "return tmp4"

•  Note: translation makes the order of evaluation explicit.

CIS 341: Compilers 17

Plus(Plus(Int 1, Int2),  
 Plus(Int 3, Plus(X,  
 Int 5)))"

Translation 1: Streams of Instructions
•  See the code in sll.ml

–  functions emit_exp and sll_exp

•  Compare with
–  emit_exp of compile.ml

•  Similar code generation as with the “stack-based”

Zdancewic CIS 341: Compilers 18

Continuation Passing Style
 ⟦exp⟧ k

•  Idea: parameterize the compilation function by an extra
argument k

•  k is itself a function, called a continuation.
–  The continuation function takes one argument, which is the answer

computed by exp
–  The continuation says how to “continue” processing the result.

•  Call the translation function with an “initial” continuation that just
returns the result.

•  Variants:
–  k is a metalevel function that returns a metalevel value ⇒ interpreter
–  k is a metalevel function that returns object level code ⇒ compiler
–  k is an object level function or label ⇒ useful for optimizations

Zdancewic CIS 341: Compilers 19

Translation 2: CPS Translation to SLL
•  Translation function written in continuation passing style (CPS):

–  Note the extra argument ‘k’ to the ⟦-⟧ translation

•  Idea: represent “what to do next” with a meta-level function called a
continuation – allows for concise expression of compilation
algorithms

•  Here: the object level is the language of sums and the meta level is
OCaml (the language used for implementation)

CIS 341: Compilers 20

⟦Cint	 n⟧ k " "= k (Imm n) "
⟦Plus(l, r)⟧ k "= "
" "⟦l⟧(fun ansl ->  

 ⟦r⟧(fun ansr ->  
" " " " let tmp = mk_uid () in  

 Let(tmp, Add(ansl, ansr),  
" " " " " " k (Var tmp))) "

Translating Simple SLL to X86
•  Translation of SSA to X86 is a bit tricky:

–  Need to find locations for the temporary values ���
(either in registers or on the stack)

–  X86 uses the “two address” version of Add, which is a bit inconvenient

•  In this case, only two non-dedicated registers are needed:���
tmp0 and tmp4 ⇒ %eax ���
tmp1, tmp2, tmp3 ⇒ %ebx"
 Assumes that %edx contains the value for X (the user-provided arg)

•  We’ll address efficient automatic register allocation later in the semester…

CIS 341: Compilers 21

let tmp0 = Add(1, 2) in"
let tmp1 = GetArg in"
let tmp2 = Add(tmp1, 5) in"
let tmp3 = Add(3, tmp2) in"
let tmp4 = Add(tmp0, tmp3) in"
 " return tmp4"

mov $1, %eax"
add $2, %eax"
mov %edx, %ebx"
add $5, %ebx"
add $3, %ebx"
add %ebx, %eax"

