
CIS 341: COMPILERS
Lecture 10

Announcements

•  Project 3: Compiling Control Flow
–  Due: Monday, February 25th at 11:59pm

•  Midterm Exam:
–  Thursday, February 28th
–  In class
–  Examples on the web

Zdancewic CIS 341: Compilers 2

Backend
Assembly Code
CMP ECX, 0  
SETBZ EAX"

Intermediate
Code Generation

Intermediate
code:
l1:"
if(#_t5 = 0) then  
 l2 else l3  
l2:"
 #_t4 := 0"
 jump l3"
l3:"

Abstract Syntax Tree:

Parsing

if

==

b 0

=

a 0

;

Today: Intermediate Representations

CIS 341: Compilers 3

Source Code���
(Character stream)
if (b == 0) a = 0;"

Lexical Analysis
Token stream:

if" (" b" ==" 0")" a" =" 0" ;"

LLVM LITE

Zdancewic CIS 341: Compilers 4

see ll.ml in Project 3

Low-Level Virtual Machine (LLVM)
•  Open-Source Compiler Infrastructure

–  see llvm.org for full documntation
•  Created by Chris Lattner (advised by Vikram Adve) at UIUC

–  LLVM: An infrastructure for Mult-stage Optimization, 2002
–  LLVM: A Compilation Framework for Lifelong Program Analysis and

Transformation, 2004

•  2005: Adopted by Apple for XCode 3.1
•  Front ends:

–  llvm-gcc (drop-in replacement for gcc)
–  Clang: C, objective C, C++ compiler supported by Apple
–  various languages: ADA, Scala, Haskell, …

•  Back ends:
–  x86 / Arm / Power / etc.

•  Used in many academic/research projects
–  Here at Penn: SoftBound, Vellvm

Zdancewic CIS 341: Compilers 5

LLVM Compiler Infrastructure

LLVM

Front
Ends

Code
Gen/Jit

Optimizations/
Transformations�

Typed SSA
IR�

Analysis�

[Lattner et al.]

LL: A Subset of LLVM

Zdancewic CIS 341: Compilers 7

op " "::= %uid | constant"

bop "::= add | sub | mul | shl | …"

cmpop "::= eq | ne | slt | sle | …"

insn ::="
 | "%uid = bop op1, op2"
 | "%uid = alloca!
 | "%uid = load op1"
 | "store op1, op2"
 | "%uid = icmp cmpop op1, op2"

terminator ::="
 | "ret op"
 | "br op label %lbl1, label %lbl2"
 | "br label %lbl"

Basic Blocks
•  A sequence of instructions that is always executed starting at the first

instruction and always exits at the last instruction.
–  Starts with a label that names the entry point of the basic block.
–  Ends with a control-flow instruction (e.g. branch or return) the “link”
–  Contains no other control-flow instructions
–  Contains no interior label used as a jump target

•  Basic blocks can be arranged into a control-flow graph
–  Nodes are basic blocks
–  There is a directed edge from node A to node B if the control flow

instruction at the end of basic block A might jump to the label of basic
block B.

CIS 341: Compilers 8

LL Basic Blocks and Control-Flow Graphs
•  LLVM enforces (some of) the basic block invariants syntactically.
•  Representation in OCaml:

•  A control flow graph is represented as a list of basic blocks with these
invariants:
–  No two blocks have the same label
–  All terminators mention only labels that are defined among the set of

basic blocks
–  There is a distinguished entry point label (which labels a block)

Zdancewic CIS 341: Compilers 9

type bblock = {"
"label : lbl;"
"insns : insn list;"
"terminator : terminator"

}"

type prog = {ll_cfg : bblock list; ll_entry : lbl}"

LL Storage Model: Locals
•  Two kinds of storage:

–  Local variables: %uid"
–  Abstract locations: references to storage created by the alloca

instruction

•  Local variables:
–  Defined by the instructions of the form %uid = …
–  Must satisfy the single static assignment invariant

•  Each %uid appears on the left-hand side of an assignment only once in the
entire control flow graph.

–  The value of a %uid remains unchanged throughout its lifetime
–  Analogous to “let %uid = e in …” in OCaml

•  Intended to be an abstract version of machine registers.

•  We’ll see later how to extend SSA to allow richer use of local
variables.

Zdancewic CIS 341: Compilers 10

LL Storage Model: alloca!
•  The alloca instruction allocates a fresh (32-bit) slot and returns a

reference to it.
–  The returned reference is stored in local:
 %ptr = alloca"

•  The contents of the slot are accessed via the load and store
instructions:���

 %acc = alloca " "; allocate a storage slot 
"store 341, %acc "; store the integer value 341  
"%x = load %acc" "; load the value 341 into %x

•  Gives an abstract version of stack slots
–  Project 3 will show how to compile alloca-created storage to stack

space.

Zdancewic CIS 341: Compilers 11

Example LLVM Code
•  LLVM offers a textual representation of its IR

–  files ending in .ll"

Zdancewic CIS 341: Compilers 12

define @factorial(%n) {"
entry:"
 %1 = alloca "
 %acc = alloca "
 store %n, %1"
 store 1, %acc"
 br label %start"

start: "
 %3 = load %1"
 %4 = icmp ugt %3, 0"
 br %4, label %then, label %else"

then: "
 %6 = load %acc"
 %7 = load %1"
 %8 = mul %6, %7"
 store %8, %acc"
 %9 = load %1"
 %10 = sub %9, 1"
 store %10, %1"
 br label %start"

else: "
 %12 = load %acc, align 4"
 ret %12"
}"

unsigned factorial(unsigned n) {"
 unsigned acc = 1;"
 while (n > 0) {"
 acc = acc * n;"
 n = n -1;"
 }"
 return acc;"
}"

example.c

example.ll

Real LLVM
•  Decorates values with type information���

 i32 ���
 i32* ���
 i1"

•  Has alignment ���
annotations

•  Keeps track of ���
entry edges for���
each block:���
preds = %start"

Zdancewic CIS 341: Compilers 13

define i32 @factorial(i32 %n) nounwind uwtable ssp {"
entry:"
 %1 = alloca i32, align 4"
 %acc = alloca i32, align 4"
 store i32 %n, i32* %1, align 4"
 store i32 1, i32* %acc, align 4"
 br label %start"

start: ; preds = %entry, %else"
 %3 = load i32* %1, align 4"
 %4 = icmp ugt i32 %3, 0"
 br i1 %4, label %then, label %else"

then: ; preds = %start"
 %6 = load i32* %acc, align 4"
 %7 = load i32* %1, align 4"
 %8 = mul i32 %6, %7"
 store i32 %8, i32* %acc, align 4"
 %9 = load i32* %1, align 4"
 %10 = sub i32 %9, 1"
 store i32 %10, i32* %1, align 4"
 br label %start"

else: ; preds = %start"
 %12 = load i32* %acc, align 4"
 ret i32 %12"
}"

SCOPE AND CONTEXTS

Zdancewic CIS 341: Compilers 14

Variable Scoping
•  Consider the problem of determining whether a programmer-declared

variable is in scope.

•  See: Project 3 web pages for OAT’s scoping rules.

•  Issues:
–  Which variables are available at a given point in the program?
–  Shadowing – is it permissible to re-use the same identifier, or is it an error?

•  Solution:
–  Contexts

Zdancewic CIS 341: Compilers 15

Notation for Scope Checking
•  Contexts (using OCaml list notation):

G ::= [] | IDENT::G "

•  Syntax-directed “functions” that say how to compositionally check the
scope
–  One function fore each syntactic category of the grammar.
–  Each function takes an input context (variables that are in scope)
–  May produce an output context (if new variables are introduced)

Zdancewic CIS 341: Compilers 16

G ⊢ exp

G ⊢ vdecl ⇒ G"

G ⊢ vdecl_list ⇒ G"

G ⊢ block ⇒ G"

G ⊢ stmt"

G ⊢ prog "

