Lecture 13

CIS 341: COMPILERS

Announcements

* Midterm Exam:
— Thursday, February 28t
— Inclass
— Examples on the web

Zdancewic CIS 341: Compilers

DATATYPES IN THE IR

Zdancewic CIS 341: Compilers

Structured Data in LLVM

* LLVM'’s IR is uses types to describe the structure of data.

t s:=

i32 32-bit integers

[<#elts> x t] arrays

r(ty, b, « 4, t) function types

{t,£/w, -, « , t.} structures

t* pointers

$Tident named (identified) type
rose= Return Types

t first-class type

void no return value

« <felts> is an integer constant >= 0
» Structure types can be named at the top level:

3Tl = type {t,, 4, .. , t.}
— Such structure types can be recursive

Zdancewic CIS 341: Compilers

Example LL Types

An array of 341 integers: [341 x i32]
A two-dimensional array of integers: [3 x [4 x 132]]

Structure for representing arrays with their length:
{ 132 , [0 x 132] }
— There is no array-bounds check; the static type information is only used
for calculating pointer offsets.

C-style linked lists (declared at the top level):
$Node = type { 132, %Node*}

Structs from the C program shown earlier:
$Rect = { %Point, %$Point, %$Point, %Point }
$Point = { i32, i32 }

Zdancewic CIS 341: Compilers

insn ::= ..
|

GetElementPtr

LLVM provides the getelementptr instruction to compute pointer
values

— Given a pointer and a “path” through the structured data pointed to by
that pointer, getelementptr computes an address

— This is the abstract analog of the X86 LEA (load effective address). It does
not access memory.

— It is a “type indexed” operation, since the sizes computations involved
depend on the type

uid = getelementptr t*, %val, tl idxl, t2 idx2

Example: access the x component of the first point of a rectangle:

$tmpl = getelementptr %Rect* $%$square, i32 0, 132 0
$tmp2 = getelementptr %Point* %$tmpl, i32 0, 132 0

Zdancewic CIS 341: Compilers

, (X1

6

Example*

struct RT {

int A; 1. %s is a pointer to an (array of) ST structs,

int B[10][20]; suppose the pointer value is ADDR

int C;
} 2. Compute the index of the 15t element by
struct ST { adding sizeof (struct ST).

struct RT X;

int Y; 3. Compute the index of the 2 field by

adding sizeof (struct RT) +

struct RT Z;
sizeof (int) to skip past X and Y.

}

int *foo(struct ST) .
return &s[1l7- 4. Compute the index of the B field by

} ‘—!<—_'; adding sizeof (int) to skip past A.

5. Index into the 2d array.

$RT = type { i32, [10 x [20 x i32]], i32 }
$ST = type { %RT, 132, S%RT }

define i32* @foo(%ST* %s) {

entry: (Y f g ‘
$arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* Sarrayidx

Final answer: ADDR + sizeof(struct ST) + sizeof(struct RT) + sizeof(int)
+ sizeof(int) + 5*20*sizeof(int) + 13*sizeof(int)

Zdancewic CIS 341: Compile «adapted from the LLVM documentaion: see http:/llvm.org/docs/LangRef.htm!# getelementptr-instruction

Other Adjustments to the IR

LLVM’s alloca instruction accepts a type:

$uid = alloca <type>

External linkage to call C functions:
— Needed for malloc

Project 4 will provide a simplified interface to getelementptr
— Only support for arrays (structs aren’t needed until Project 5)

getelementptr in practice:
— See struct.c and struct.ll

— Note that we will ignore lots of alignment and other annotations (e.g.
inbound) seen in “real” LLVM code

— We will generate them for you from the LL subset of LLVM.

Zdancewic CIS 341: Compilers

FIRST-CLASS FUNCTIONS

Zdancewic CIS 341: Compilers

“Functional” languages

« Languages like ML, Haskell, Scheme, Python, C#, (maybe eventually
Java?) include first-class functions.

Functions can be passed as arguments (e.g. map or fold)
Functions can be returned as values (e.g. compose)
Functions nest: inner function can refer to variables bound in the outer

function

let
let
let

let
let

add = fun x -> funy -> x + vy
inc = add 1
dec = add -1

compose = fun f -> fun g -> fun x -> £ (g x)

id = compose inc dec

* How do we implement such functions?

CIS 341: Compilers 10

Free Variables

let add = fun x -=> funy -> x + vy
let inc = add 1

e Theresult of add 1 is a function

« After calling add, we can’t throw away its argument (or its local
variables) because those are needed in the function returned by add.

* We say that the variable x is free in fun y -=> x + y
— Free variables are defined in an outer scope

« We say that the variable y is bound by “fun y” and its scope is the
body “x + y” in the expression fun y -> x + y

e A term with no free variables is called closed.
« A term with one or more free variables is called open.

CIS 341: Compilers 11

Substitution Semantics

« Consider how to evaluate such functions:
inc = add 1
= (fun x -> funy ->x +y) 1
= funy -> 1 + vy
« Similarly
dec = funy -> -1 + vy
* So:
id = compose inc dec
= (fun £ -> (fun g -> fun x -> £ (g x))) inc dec
= (fun g -> fun x -> inc (g x)) dec

= fun x -> (fun y -> 1 + y) (dec Xx)

= fun x -> (1 + (dec X))

= fun x -> (1 + ((fun y -> -1 + y) X))
= fun x -> (1 + (-1 + X))

CIS 341: Compilers

Substitutions Continued

* When we substitute a value v for some variable x in an expression e

(written subst v x e), we replace all free occurrences of x in e by
V.

* Function application can be interpreted by substitution:
(fun x -> funy ->x +vy) 1
= subst 1 x (fun y -> x + vy)
(fun y -=> 1 +vy)

CIS 341: Compilers 13

(Untyped) Lambda Calculus

* The lambda calculus is a minimal programming language.

— Note: we're writing (fun x -> e) lambda-calculus notation: A x. e
* It has variables, functions, and function application.

— That'’s it! (Though for examples, I'll add int and +)

— It's Turing Complete.

— It’s the foundation for a /ot of research in programming languages.

— Basis for “functional” languages like Scheme, ML, Haskell, etc.

Abstract syntax in OCaml:

type exp =
| var of var (* variables *)
| Fun of var * exp (* functions: fun x -> e *)
| App of exp * exp (* function application *)

Concrete syntax:

exp =
X variables
fun x =>exp functions
exp; exp, function application
CIS 341: Compilers (exp) parentheses

