
CIS 341: COMPILERS 
Lecture 13 



Announcements 

•  Midterm Exam: 
–  Thursday, February 28th  
–  In class 
–  Examples on the web 

Zdancewic     CIS 341: Compilers     2 



DATATYPES IN THE IR 

Zdancewic     CIS 341: Compilers     3 



Structured Data in LLVM 
•  LLVM’s IR is uses types to describe the structure of data. 

•  <#elts> is an integer constant >= 0 
•  Structure types can be named at the top level: 

–  Such structure types can be recursive 

Zdancewic     CIS 341: Compilers     4 

t ::=  !
!i32! ! ! ! ! !32-bit integers 
![<#elts> x t] ! ! !arrays 
!r (t1, t2, … , tn) ! !function types!
!{t1, t2, … , tn}! ! !structures 
!t* ! ! ! ! ! !pointers 
!%Tident ! ! ! !named (identified) type 

r ::= ! ! !Return Types 
!t       first-class type 
!void ! ! ! ! !no return value 

%T1 = type {t1, t2, … , tn} 



Example LL Types 
•  An array of 341 integers:     [ 341 x i32 ]!

•  A two-dimensional array of integers:  [ 3 x [ 4 x i32 ] ]!

•  Structure for representing arrays with their length:���
     { i32 , [0 x i32] } 
–  There is no array-bounds check; the static type information is only used 

for calculating pointer offsets. 

•  C-style linked lists (declared at the top level):���
    %Node = type { i32, %Node*}!

•  Structs from the C program shown earlier:���
   %Rect = { %Point, %Point, %Point, %Point }  
! ! !%Point = { i32, i32 } 

Zdancewic     CIS 341: Compilers     5 



GetElementPtr 
•  LLVM provides the getelementptr instruction to compute pointer 

values 
–  Given a pointer and a “path” through the structured data pointed to by 

that pointer, getelementptr computes an address 
–  This is the abstract analog of the X86 LEA (load effective address). It does 

not access memory. 
–  It is a “type indexed” operation, since the sizes computations involved 

depend on the type 

•  Example: access the x component of the first point of a rectangle: 

Zdancewic     CIS 341: Compilers     6 

insn ::= …!
! !|  %uid = getelementptr t*, %val, t1 idx1, t2 idx2 ,… !

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0!
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0!



Example* 

Zdancewic     CIS 341: Compilers     7 

struct RT {!
!int A;!
!int B[10][20];!
!int C;!

}!
struct ST {!

!struct RT X;!
!int Y;!
!struct RT Z;!

}!
int *foo(struct ST *s) {!
  return &s[1].Z.B[5][13];!
}!

%RT = type { i32, [10 x [20 x i32]], i32 }!
%ST = type { %RT, i32, %RT }!
define i32* @foo(%ST* %s) {!
entry:!

!%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13!
!ret i32* %arrayidx!

}!

*adapted from the LLVM documentaion: see http://llvm.org/docs/LangRef.html#getelementptr-instruction 

1. %s is a pointer to an (array of) ST structs, 
suppose the pointer value is ADDR 

2. Compute the index of the 1st element by 
adding sizeof(struct ST). 

3. Compute the index of the Z field by 
adding sizeof(struct RT) + 
sizeof(int) to skip past X and Y. 

4. Compute the index of the B field by 
adding sizeof(int) to skip past A. 

5. Index into the 2d array. 

Final answer:  ADDR + sizeof(struct ST) + sizeof(struct RT) + sizeof(int)  
! ! !   + sizeof(int) + 5*20*sizeof(int) + 13*sizeof(int)!



Other Adjustments to the IR 
•  LLVM’s alloca instruction accepts a type:���

     %uid = alloca <type>!

•  External linkage to call C functions:  
–  Needed for malloc  

•  Project 4 will provide a simplified interface to getelementptr 
–  Only support for arrays (structs aren’t needed until Project 5) 

•  getelementptr in practice: 
–  See struct.c and struct.ll  
–  Note that we will ignore lots of alignment and other annotations (e.g. 

inbound) seen in “real” LLVM code 
–  We will generate them for you from the LL subset of LLVM. 

Zdancewic     CIS 341: Compilers     8 



FIRST-CLASS FUNCTIONS 

Zdancewic     CIS 341: Compilers     9 



“Functional” languages 
•  Languages like ML, Haskell, Scheme, Python, C#, (maybe eventually 

Java?) include first-class functions. 
•  Functions can be passed as arguments (e.g. map or fold) 
•  Functions can be returned as values (e.g. compose) 
•  Functions nest: inner function can refer to variables bound in the outer 

function 

let add = fun x -> fun y -> x + y!
let inc = add 1!
let dec = add -1!

let compose = fun f -> fun g -> fun x -> f (g x)!
let id = compose inc dec !

•  How do we implement such functions?!

CIS 341: Compilers 10 



Free Variables 
let add = fun x -> fun y -> x + y!
let inc = add 1 

•  The result of add 1 is a function 
•  After calling add, we can’t throw away its argument (or its local 

variables) because those are needed in the function returned by add. 
•  We say that the variable x is free in fun y -> x + y!

–  Free variables are defined in an outer scope 

•  We say that the variable y is bound by “fun y” and its scope is the 
body “x + y” in the expression fun y -> x + y!

•  A term with no free variables is called closed. 
•  A term with one or more free variables is called open. 

CIS 341: Compilers 11 



Substitution Semantics 
•  Consider how to evaluate such functions: 
inc = add 1!
!= (fun x -> fun y -> x + y) 1!
!= fun y -> 1 + y!
•  Similarly 
dec = fun y -> -1 + y!
•  So:  
id = compose inc dec!
!= (fun f -> (fun g -> fun x -> f (g x))) inc dec!
!= (fun g -> fun x -> inc (g x)) dec!
!= fun x -> (fun y -> 1 + y) (dec x)!
!= fun x -> (1 + (dec x))!
!= fun x -> (1 + ((fun y -> -1 + y) x))!
!= fun x -> (1 + (-1 + x))!

CIS 341: Compilers 12 



Substitutions Continued 
•  When we substitute a value v for some variable x in an expression e 

(written subst v x e), we replace all  free occurrences of x in e by 
v. 

•  Function application can be interpreted by substitution: 
!  (fun x -> fun y -> x + y) 1!
!= subst 1 x (fun y -> x + y)!
!= (fun y -> 1 + y)!

CIS 341: Compilers 13 



(Untyped) Lambda Calculus 
•  The lambda calculus is a minimal programming language. 

–  Note:  we’re writing  (fun x -> e) lambda-calculus notation:  λ x. e 

•  It has variables, functions, and function application. 
–  That’s it!  (Though for examples, I’ll add int and +) 
–  It’s Turing Complete. 
–  It’s the foundation for a lot of research in programming languages. 
–  Basis for “functional” languages like Scheme, ML, Haskell, etc. 

Abstract syntax in OCaml: 

Concrete syntax: 

CIS 341: Compilers 14 

type exp = !
 | Var of var        (* variables             *)!
 | Fun of var * exp  (* functions: fun x -> e *)!
 | App of exp * exp  (* function application  *)!

exp ::=  
 | x     variables  
 | fun x -> exp  functions 
 | exp1 exp2   function application 
 | ( exp )   parentheses!


