
CIS 341: COMPILERS
Lecture 14

Announcements
•  Midterm Exam:

–  Not quite done grading yet!
–  Will be available Thursday

•  Project 4 is available from the course web pages
–  Due on Thursday, March 21st.
–  As usual, start early and ask questions if you get stuck
–  Note: revised version of LL intermediate representation to be more

compliant with “real” LLVM IR

Zdancewic CIS 341: Compilers 2

FIRST-CLASS FUNCTIONS

Zdancewic CIS 341: Compilers 3

Untyped lambda calculus
Substitution
Evaluation

“Functional” languages
•  Languages like ML, Haskell, Scheme, Python, C#, (maybe eventually

Java?) include first-class functions.
•  Functions can be passed as arguments (e.g. map or fold)
•  Functions can be returned as values (e.g. compose)
•  Functions nest: inner function can refer to variables bound in the outer

function

let add = fun x -> fun y -> x + y!
let inc = add 1!
let dec = add -1!

let compose = fun f -> fun g -> fun x -> f (g x)!
let id = compose inc dec !

•  How do we implement such functions?!

CIS 341: Compilers 4

Free Variables and Scoping
let add = fun x -> fun y -> x + y!
let inc = add 1

•  The result of add 1 is a function
•  After calling add, we can’t throw away its argument (or its local

variables) because those are needed in the function returned by add.
•  We say that the variable x is free in fun y -> x + y!

–  Free variables are defined in an outer scope

•  We say that the variable y is bound by “fun y” and its scope is the
body “x + y” in the expression fun y -> x + y!

•  A term with no free variables is called closed.
•  A term with one or more free variables is called open.

CIS 341: Compilers 5

(Untyped) Lambda Calculus
•  The lambda calculus is a minimal programming language.

–  Note: we’re writing (fun x -> e) lambda-calculus notation: λ x. e

•  It has variables, functions, and function application.
–  That’s it! (Though for examples, I’ll add int and +)
–  It’s Turing Complete.
–  It’s the foundation for a lot of research in programming languages.
–  Basis for “functional” languages like Scheme, ML, Haskell, etc.

Abstract syntax in OCaml:

Concrete syntax:

CIS 341: Compilers 6

type exp = !
 | Var of var (* variables *)!
 | Fun of var * exp (* functions: fun x -> e *)!
 | App of exp * exp (* function application *)!

exp ::=
 | x variables
 | fun x -> exp functions
 | exp1 exp2 function application
 | (exp) parentheses!

Values and Substitution
•  The only values of the lambda calculus are (closed) functions:

•  To substitute a (closed) value v for some variable x in an expression e
–  Replace all free occurrences of x in e by v.
–  In OCaml: written subst v x e
–  In Math: written e{v/x}

•  Function application is interpreted by substitution:
! (fun x -> fun y -> x + y) 1!
!= subst 1 x (fun y -> x + y)!
!= (fun y -> 1 + y)!

CIS 341: Compilers 7

val ::=
 | fun x -> exp functions are values

Lambda Calculus Operational Semantics
•  Substitution function (in Math):���

 x{v/x} = v (replace the free x by v)���
 y{v/x} = y (assuming y ≠ x)���
(fun x -> exp){v/x} = (fun x -> exp) (x is bound in exp)���
(fun y -> exp){v/x} = (fun y -> exp{v/x}) (assuming y ≠ x)���
 (e1 e2){v/x} = (e1{v/x} e2{v/x}) (substitute everywhere)

•  Examples:���
 x y {(fun z ->z)/y} ⇒ x (fun z -> z)���

 (fun x -> x y){(fun z -> z) / y} ⇒ (fun x -> x (fun z -> z))���

 (fun x -> x){(fun z -> z) / x} ⇒ (fun x -> x) // x is not free!

Zdancewic CIS 341: Compilers 8

Free Variable Calculation
•  An OCaml function to calculate the set of free variables in a lambda

expression:

•  A lambda expression e is closed if free_vars e returns
VarSet.empty!

•  In mathematical notation:���

 fv(x) = {x}���
 fv(fun x -> exp) = fv(exp) \ {x} (‘x’ is a bound in exp)���
 fv(exp1 exp2) = fv(exp1) ∪ fv(exp2)

Zdancewic CIS 341: Compilers 9

let rec free_vars (e:exp) : VarSet.t =!
 begin match e with!
 | Var x -> VarSet.singleton x!
 | Fun(x, body) -> VarSet.remove x (free_vars body)!
 | App(e1, e2) -> VarSet.union (free_vars e1) (free_vars e2)!
 end!

Operational Semantics
•  Specified using just two inference rules with judgments of the form

exp ⇓ val
–  Read this notation a as “program exp evaluates to value val”
–  This is call-by-value semantics: function arguments are evaluated before

substitution

Zdancewic CIS 341: Compilers 10

v ⇓ v

exp1 ⇓ (fun x -> exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“Values evaluate to themselves”

“To evaluate function application: Evaluate the function to a value, evaluate the���
argument to a value, and then substitute the argument for the function. ”

Adding Integers to Lambda Calculus

Zdancewic CIS 341: Compilers 11

exp1 ⇓ n1 exp2 ⇓ n2

exp1 + exp2 ⇓ (n1 ⟦+⟧ n2)

exp ::=
 | …
 | n constant integers
 | exp1 + exp2 binary arithmetic operation

val ::=
 | fun x -> exp functions are values
 | n integers are values

n{v/x} = n constants have no free vars.
(e1 + e2){v/x} = (e1{v/x} + e2{v/x}) substitute everywhere

Object-level ‘+’ Meta-level ‘+’

How to Implement?
•  Code in fun.ml shows:
–  A substitution-based interpreter
–  Two environment-based interpreters (one broken)

•  We’ll come back to compilation after discussing
typechecking….

CIS 341: Compilers 12

TYPE CHECKING

Zdancewic CIS 341: Compilers 13

Ruling out ill-defined programs at compile time.

Type Checking / Static Analysis
•  Recall the interpreter from the Eval3 module:
let rec eval env e =!
 match e with!
 | …!
 | Add (e1, e2) ->!
! (match (eval env e1, eval env e2) with!
! | (IntV i1, IntV i2) -> IntV (i1 + i2)!
! | _ -> failwith "tried to add non-integers")!

 | …!

•  The interpreter might fail at runtime.
–  Not all operations are defined for all values (e.g. 3/0, 3 + true, …)

•  A compiler can’t generate sensible code for this
case.
–  A naïve implementation might “add” an integer and a pointer

CIS 341: Compilers 14

What to do?
•  Don’t worry about it… e.g. C, C++

–  Result: segmentation faults, bus errors, etc.

•  Make all operations total (i.e. defined everywhere)… e.g. Scheme / Perl
–  3 + true 42, … (language specifies behavior)
–  Result: unpredictable answers

•  Raise a “runtime type error”… e.g. Python, Ruby, and other dynamically
typed languages
–  Result: failure at deployment time

•  Try to rule out ill-formed programs… e.g. Java, C#, ML, Haskell
–  3 + true compiler error: ���

“This expression has type bool but is here used with type int”
–  Result: predictable programs, but it’s harder to “get programs running”

•  How do you know you’ve ruled out all ill-formed programs?

CIS 341: Compilers 15

Type Soundness
•  Build a model of the programming language

–  One model: an interpreter
–  Another model: constructed in mathematics
–  Usually defined via the abstract syntax

•  Model defines where the language operations are partial
–  Partiality is different for different languages: e.g. “foo” + “bar” is

meaningful in Java but not OCaml

•  Construct a function: well_typed : Ast -> unit!
–  When well_typed e succeeds, running e will definitely not trigger

one of the undefined operation cases (i.e. e is type safe)
–  When well_typed e aborts with an exception, running e might trigger

an undefined operation (i.e. e is not type safe)

•  Prove that the well_typed function is correct.
–  Such proofs are sometimes difficult, but doable for real languages (e.g.

SML, Java)

CIS 341: Compilers 16

Typechecking
•  How do we implement the function well_typed?

•  Big idea: “approximate” the interpreter:
–  Problem is partiality in the language semantics as defined by the

interpreter.
–  Instead of interpreting the program, write a function called typecheck

that computes a type for the program (rather than the answer obtained by
running the program).

–  Behavior of typecheck is guided by what the interpreter would do.

•  See “tc.ml”

CIS 341: Compilers 17

Notes about this Typechecker
•  In the interpreter, we only evaluate the body of a function when it's

applied.
•  In the typechecker, we always check the body of the function (even if

it's never applied.)
–  Because of this, we must assume the input has some type (say t1) and

reflect this in the type of the function ���
(t1 -> t2).

•  Dually, at a call site (e1 e2), we don't know what closure we're going
to get.
–  But we can calculate e1's type, check that e2 is an argument of the right

type, and also determine what type e1 will return.

•  Question: Why is this an approximation?
•  Question: What if well_typed always returns false?

Defining Type Systems Mathematically
•  In the OCaml implementation we have: ���

 typecheck (env:environment) (e:exp):ty!
–  Where exp is the type of abstract syntax and environment is a list of

var * ty pairs.
–  The result of typecheck is a type

•  We can abstract this function in math as a relation:���
The notation: E ⊢ e : t means typecheck C e = t
–  “In the environment E, program e is well-typed and has type t”
–  “e : t” is a type judgment

•  Simple examples: ⊢ 3 : int ⊢ true : bool ⊢ “hello” : string

•  Bigger examples: ⊢ (2 * 3) + 5 : int ⊢ if (true) 3 else 4 : int

CIS 341: Compilers 19

Type Judgments
•  In the judgment: E ⊢ e : t

–  E is a typing environment or a type context
–  E maps variables to types. It is just a set of bindings of the form: ���

x1 : t1, x2 : t2, …, xn : tn

•  For example: x : int, b : bool ⊢ if (b) 3 else x : int

•  What do we need to know to decide whether “if (b) 3 else x” has type
int in the environment x : int, b : bool?
–  b must be a bool i.e. x : int, b : bool ⊢ b : bool
–  3 must be an int i.e. x : int, b : bool ⊢ 3 : int
–  x must be an int i.e. x : int, b : bool ⊢ x : int

CIS 341: Compilers 20

Generalizing ‘if’ & Inference Rules
•  For any environment E, expressions e1, e2, e3, and type T the judgment ���

 ���
 E ⊢ if (e1) e2 else e3 : T ���

is true if E ⊢ e1 : bool, and E ⊢ e2 : T, and E ⊢ e3 : T are all true.
•  More succinctly: we summarize this as an inference rule:

•  This rule holds for any substitution of the syntactic metavariables E, e1,
e2, e3, and T

CIS 341: Compilers 21

E ⊢ e1 : bool E ⊢ e2 : T E ⊢ e3 : T

E ⊢ if (e1) e2 else e3 : T

Premises

Conclusion

Simply-typed Lambda Calculus
•  For the language in “tc.ml” we have five inference rules:

•  Note how these rules correspond to the code.

CIS 341: Compilers 22

E ⊢ i : int

E ⊢ e1 : int E ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ E

E ⊢ x : T

E, x : T ⊢ e : S

E ⊢ fun (x:T) -> e : T -> S

E ⊢ e1 : T -> S E ⊢ e2 : T

E ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Type Checking Derivations
•  A derivation or proof tree has (instances of) judgments as its nodes and

edges that connect premises to a conclusion according to an inference
rule.

•  Leaves of the tree are axioms (i.e. rules with no premises)
–  Example: the INT rule is an axiom

•  Goal of the typechecker: verify that such a tree exists.
•  Example: Find a tree for the following program using the inference

rules on the previous slide:

 ⊢ (fun (x:int) -> x + 3) 5 : int

CIS 341: Compilers 23

Example Derivation Tree

•  Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is
the same shape as this tree!

•  Note that x : int ∈ E is implemented by the function lookup!

CIS 341: Compilers 24

⊢ (fun (x:int) -> x + 3) 5 : int

⊢ (fun (x:int) -> x + 3) : int -> int ⊢ 5 : int

x : int ⊢ x + 3 : int

x : int ⊢ x : int x : int ⊢ 3 : int

x : int ∈ x : int

APP

INT

INT VAR

ADD

FUN

