
CIS 341: COMPILERS
Lecture 15

Announcements
•  Midterm Exam:

–  Graded and entered

•  Project Grades:
–  We need to propagate the grades from one team member to another.
–  But: for Project 2 we forgot to ask for team.txt, so we need the team-

member information. See email/announcement on Piazza for
instructions.

•  Project 4 is available from the course web pages
–  Due on Thursday, March 21st.
–  As usual, start early and ask questions if you get stuck
–  Note: revised version of LL intermediate representation to be more

compliant with “real” LLVM IR

Zdancewic CIS 341: Compilers 2

Midterm Exam Grade Distribution
•  Average: ~77%
•  Median: ~84%
•  Std. Dev: ~20%
•  Max: 99/100

Zdancewic CIS 341: Compilers 3

CLOSURE CONVERSION

Zdancewic CIS 341: Compilers 4

Compiling lambda calculus to straight-line code.
Representing evaluation environments at runtime.���

Compiling First-class Functions

•  To implement first-class functions on a processor, there are two
problems:
–  First: we must implement substitution of free variables
–  Second: we must separate ‘code’ from ‘data’

•  Closure Conversion:
–  Eliminates free variables by packaging up the needed environment in a

data structure.
–  Big idea: push the meta-level environment into the object-level

•  Hoisting:
–  Separates code from data, pulling closed code to the top level.

Zdancewic CIS 341: Compilers 5

Example of closure creation
•  Recall the “add” function:���

let add = fun x -> fun y -> x + y!

•  Consider the inner function: fun y -> x + y!

•  When run the function application: add 4  
the program builds a closure and returns it.
–  The closure is a pair of the environment and a code pointer.

•  The code pointer takes a pair of parameters: env and y
–  The function code is (essentially):���

 fun (env, y) -> let x = nth env 1 in x + y!

CIS 341: Compilers 6

ptr! Code(env, y, body)!

(4) code body

Example of Closure Application
•  To “invoke” a closure, the semantics of the IL must bake in the

projection of the environment and code point from the closure value.

•  At the meta-level: App(e1, e2)

Zdancewic CIS 341: Compilers 7

Representing Closures
•  The simple closure conversion algorithm in cc.ml isn’t very efficient:

–  It stores all the values for variables in the environment, even if they aren’t
needed.

–  It copies the environment values to a new tuple each time an inner
closure is created.

•  There are many options:
–  Store only the values for the free variables in the body of the closure.
–  Share subcomponents of the environment to avoid copying
–  Use vectors or arrays rather than linked structures (indexing into the

environment becomes more complicated)

CIS 341: Compilers 8

Array-based Closures with N-ary Functions
(fun (x y z) ->!
!(fun (n m) -> (fun p -> (fun q -> n + z) x)!

fun 2!
fun 1!

fun 0!

fun q!

2,2!1,0!

x,y,z
n,m

p

nil! x! y! z!

nxt! n! m!

nxt! p! +!

Closure B

env! code!

Closure A

Closure B

env! code!

Closure A

app!

1,0!

Note how free
variables are
“addressed”
relative to the
closure due to
shared env.

BACK TO TYPECHECKING

Zdancewic CIS 341: Compilers 10

Simply-typed Lambda Calculus
•  For the language in “tc.ml” we have five inference rules:

CIS 341: Compilers 11

E ⊢ i : int

E ⊢ e1 : int E ⊢ e2 : int

E ⊢ e1 + e2 : int

x : T ∈ E

E ⊢ x : T

E, x : T ⊢ e : S

E ⊢ fun (x:T) -> e : T -> S

E ⊢ e1 : T -> S E ⊢ e2 : T

E ⊢ e1 e2 : S

INT VAR ADD

FUN APP

Different Kinds of Judgments
•  So far, we’ve been using judgments of the form “e : T” to mean

expression e has type T
•  For statements, which don’t evaluate to values, the judgment form is ���

“s ok”, meaning that the evaluation of the statement s doesn’t yield
any run-time failures.

•  Note how this difference mirrors the difference in syntax and
semantics
–  expressions evaluate to values
–  statements are evaluated for their side effects

•  (Sometimes we omit the keyword ‘ok’ since it is the same for all
statements.)

CIS 341: Compilers 12

Adding More Typing Rules
•  It is easy to add inference rules for other program constructs:

CIS 341: Compilers 13

E ⊢ e1 : int E ⊢ s ok

E ⊢ while (e1) s ok

WHILE
Note: If the language has
Booleans, we should require:
E ⊢ e1 : bool .

E ⊢ e1 : T E, x : T ⊢ s ok

E ⊢ T x = e1; s ok

VarDecl

E ⊢ x : T E ⊢ e : T

E ⊢ x = e ok

ASSIGN

Note: We add the
assumption x : T to the
context when checking e2 – x
is in scope in e2.

Note: We have a choice
about the statements vs.
expressions. We could
follow C-style and make
assignment an expression
with type ‘T’

Arrays
•  Array constructs are not hard either, here is one possibility
•  First: add a new type constructor: T[]

CIS 341: Compilers 14

E ⊢ e1 : int E ⊢ e2 : T

E ⊢ new T[e1](e2) : T[]

NEW
e1 is the size of the newly
allocated array. e2 is
initializes the elements of
the array.

E ⊢ e1 : T[] E ⊢ e2 : int

E ⊢ e1[e2] : T

INDEX

Note: These rules don’t
ensure that the array index
is in bounds – that should
be checked dynamically. E ⊢ e1 : T[] E ⊢ e2 : int E ⊢ e3 : T

E ⊢ e1[e2] = e3 ok

UPDATE

Tuples
•  ML-style tuples with statically known number of products:
•  First: add a new type constructor: T1 * … * Tn

CIS 341: Compilers 15

E ⊢ e1 : T1 … E ⊢ en : Tn

E ⊢ (e1, …, en) : T1 * … * Tn

TUPLE

E ⊢ e : T1 * … * Tn 1 ≤ i ≤ n

E ⊢ #i e : Ti

PROJ

References
•  ML-style references (note that ML uses only expressions)
•  First, add a new type constructor: T ref

CIS 341: Compilers 16

E ⊢ e : T

E ⊢ ref e : T ref

REF

E ⊢ e : T ref

E ⊢ !e : T

DEREF

Note the similarity with the
rules for arrays… E ⊢ e1 : T ref E ⊢ e2 : T

E ⊢ e1 := e2 : unit

ASSIGN

Recursive Definitions
•  Consider the ML factorial function:
!let rec fact (x:int) : int = !

 ! if (x == 0) 1 else x * fact(x-1)!

•  Note that the function name fact appears inside the body of fact’s
definition!

•  To typecheck the body of fact, we must assume that the type of fact is
already known.

•  In general: Collect the names and types of all mutually recursive
definitions, add them all to the context E before checking any of the
definition bodies.

•  Often useful to separate the “global context” from the “local context”

CIS 341: Compilers 17

E, fact : int -> int, x : int ⊢ ebody : int

E ⊢ int fact(int x) (ebody) : int -> int

OAT TYPING RULES

Zdancewic CIS 341: Compilers 18

oat.pdf (Project 4 version)

TYPES, MORE GENERALLY

Zdancewic CIS 341: Compilers 19

Beyond describing “structure”… describing “properties”
Types as sets
Subsumption���

What are types, anyway?
•  A type is just a predicate on the set of values in a system.

–  For example, the type “int” can be thought of as a boolean function that
returns “true” on integers and “false” otherwise.

–  Equivalently, we can think of a type as just a subset of all values.

•  For efficiency and tractability, the predicates are usually taken to be
very simple.
–  Types are an abstraction mechanism

•  We can easily add new types that distinguish different subsets of
values:

type tp =!
 | IntT (* type of integers *)!
 | PosT | NegT | ZeroT (* refinements of ints *)!
 | BoolT (* type of booleans *)!
 | TrueT | FalseT (* subsets of booleans *)!
 | AnyT (* any value *)!

CIS 341: Compilers 20

Modifying the typing rules
•  We need to refine the typing rules too…
•  Some easy cases:

–  Just split up the integers into their more refined cases:

•  Same for booleans:

CIS 341: Compilers 21

i > 0

E ⊢ i : Pos

P-INT

i < 0

E ⊢ i : Neg

N-INT ZERO

E ⊢ 0 : Zero

TRUE

E ⊢ true : True

FALSE

E ⊢ false : False

What about “if”?
•  Two cases are easy:

•  What happens when we don’t know statically which branch will be
taken?

•  Consider the typechecking problem:���

 x:bool ⊢ if (x) 3 else -1 : ?

•  The true branch has type Pos and the false branch has type Neg.
–  What should be the result type of the whole if?

CIS 341: Compilers 22

E ⊢ e1 : True E ⊢ e2 : T

E ⊢ if (e1) e2 else e3 : T

E ⊢ e1 : False E ⊢ e3 : T

E ⊢ if (e1) e2 else e3 : T

IF-T IF-F

Subtyping and Upper Bounds
•  If we think of types as sets of values, we have a natural inclusion

relation: Pos ⊆ Int
•  This subset relation gives rise to a subtype relation: Pos <: Int
•  Such inclusions give rise to a subtyping hierarchy:

•  Given any two types T1 and T2, we can calculate their least upper
bound (LUB) according to the hierarchy.
–  Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
–  Note: might want to add types for “NonZero”, “NonNegative”, and

“NonPositive” so that set union on values corresponds to taking LUBs on
types.

CIS 341: Compilers 23

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

“If” Typing Rule Revisited
•  For statically unknown conditionals, we want the return value to be

the LUB of the types of the branches:

•  Note that LUB(T1, T2) is the most precise type (according to the
hierarchy) that is able to describe any value that has either type T1 or
type T2.

•  In math notation, LUB(T1, T2) is sometimes written T1 ⋁ T2
•  LUB is also called the join operation.

CIS 341: Compilers 24

E ⊢ e1 : bool E ⊢ e2 : T1 E ⊢ e3 : T2

E ⊢ if (e1) e2 else e3 : LUB(T1,T2)

IF-BOOL

Subtyping Hierarchy
•  A subtyping hierarchy:

•  The subtyping relation is a partial order:
–  Reflexive: T <: T for any type T
–  Transitive: T1 <: T2 and T2 <: T3 then T1 <: T3

–  Antisymmetric: It T1 <: T2 and T2 <: T1 then T1 = T2

CIS 341: Compilers 25

Any

Int

Neg Zero Pos

Bool

True False

<: :>

:>

Soundness of Subtyping Relations
•  We don’t have to treat every subset of the integers as a type.

–  e.g., we left out the type NonNeg

•  A subtyping relation T1 <: T2 is sound if it approximates the underlying
semantic subset relation.

•  Formally: write ⟦T⟧ for the subset of (closed) values of type T
–  i.e. ⟦T⟧ = {v | ⊢ v : T}
–  e.g. ⟦Zero⟧ = {0}, ⟦Pos⟧ = {1, 2, 3, …}

•  If T1 <: T2 implies ⟦T1⟧ ⊆ ⟦T2⟧, then T1 <: T2 is sound.
–  e.g. Pos <: Int is sound, since {1,2,3,…} ⊆ {…,-3,-2,-1,0,1,2,3,...}
–  e.g. Int <: Pos is not sound, since it is not the case that

{…,-3,-2,-1,0,1,2,3,...}⊆ {1,2,3,…}

CIS 341: Compilers 26

Soundness of LUBs
•  Whenever you have a sound subtyping relation, it follows that:

 ⟦LUB(T1, T2)⟧ ⊇ ⟦T1⟧ ∪ ⟦T2⟧
–  Note that the LUB is an over approximation of the “semantic union”
–  Example: ⟦LUB(Zero, Pos)⟧ = ⟦Int⟧ = {…,-3,-2,-1,0,1,2,3,…} ⊇
 {0,1,2,3,…} = {0} ∪ {1,2,3,…} = ⟦Zero⟧ ∪ ⟦Pos⟧

•  Using LUBs in the typing rules yields sound approximations of the
program behavior (as if the IF-B rule).

•  It just so happens that LUBs on types <: Int correspond to +

CIS 341: Compilers 27

E ⊢ e1 : T1 E ⊢ e2 : T2 T1 <: Int T2 <: Int

E ⊢ e1 + e2 : T1 ⋁ T2

ADD

