
CIS 341: COMPILERS
Lecture 18

Announcements

•  Project 5 Compiling objects in full Oat
–  Available from the course web pages
–  Due April 8th

•  Final Exam:
–  Tuesday, April 30th noon-2:00 pm
–  Moore 216

Zdancewic CIS 341: Compilers 2

MULTIPLE INHERITANCE

Zdancewic CIS 341: Compilers 3

Compiling Objects
•  Objects contain a pointer to a

dispatch vector (also called a
virtual table or vtable) with
pointers to method code.

•  Code receiving set:IntSet
only knows that set has an
initial dispatch vector pointer
and the layout of that vector.

CIS 341: Compilers 4

rep:List!

IntSet1.insert!

IntSet1.has!

IntSet1.size!

rep:Tree!

size:int!

IntSet2.insert!

IntSet2.has!

IntSet2.size!

IntSet1
Dispatch Vector

IntSet2
Dispatch Vector

set!

IntSet

?

?.insert!

?.has!

?.size!

Dispatch Vector

Method Dispatch (Single Inheritance)
•  Idea: every method has its own small integer index.
•  Index is used to look up the method in the dispatch vector.

CIS 341: Compilers 5

interface A {!
 void foo();!
}!

interface B extends A {!
 void bar(int x);!
 void baz();!
}!

class C implements B {!
 void foo() {…} !
 void bar(int x) {…}!
 void baz() {…}!
 void quux() {…}!
}!

Index

0

1
2

0
1
2
3

Inheritance / Subtyping:
A <: B <: C

Multiple Inheritance
•  C++: a class may declare more than one superclass.
•  Semantic problem: Ambiguity

class A { int m(); }!
class B { int m(); }!
class C extends A,B {…} // which m?

–  Same problem can happen with fields.
–  In C++, fields and methods can be duplicated when such ambiguity arises

(though explicit sharing can be declared too)

•  Java: a class may implement more than one interface.
–  No semantic ambiguity: if two interfaces contain the same method

declaration, then the class will implement a single method
interface A { int m(); }!
interface B { int m(); }!
class C implements A,B {int m() {…}} // only one m

CIS 341: Compilers 6

Dispatch Vector Layout Strategy Breaks
interface Shape {! ! ! ! ! ! ! !D.V.Index!
 void setCorner(int w, Point p); ! ! ! !0!
}!

interface Color {!
 float get(int rgb); ! ! ! ! ! ! ! !0!
 void set(int rgb, float value); ! ! ! !1!
}!

class Blob implements Shape, Color {!
 void setCorner(int w, Point p) {…} ! ! !0?!
 float get(int rgb) {…} ! ! ! ! ! ! !0?!
 void set(int rgb, float value) {…} ! ! !1?!
}!

CIS 341: Compilers 7

General Approaches
•  Can’t directly identify methods by position anymore.

•  Option 1: Use a level of indirection:
–  Map method identifiers to code pointers (e.g. index by method name)
–  Use a hash table
–  May need to do search up the class hierarchy

•  Option 2: Give up separate compilation
–  Use “sparse” dispatch vectors, or binary decision trees
–  Must know then entire class hierarchy

•  Option 3: Allow multiple D.V. tables (C++)
–  Choose which D.V. to use based on static type
–  Casting from/to a class may require run-time operations

•  Note: many variations on these themes
–  Different Java compilers pick different approaches…

CIS 341: Compilers 8

Option 1: Search + Inline Cache
•  For each class & interface keep a table mapping method names to

method code
–  Recursively walk up the hierarchy looking for the method name

•  Note: Identifiers are in quotes are not strings; in practice they are
some kind of unique identifier.

CIS 341: Compilers 9

__get:!
 <code>!

Blob

Blob fields

“Blob”!

super!

itable!

setCorner!

get!

set!

Class Info
s!

“setCorner”!

“get”!

“set”!

Interface Map

Inline Cache Code
•  Optimization: At call site, store class and code pointer in a cache

–  On method call, check whether class matches cached value
•  Compiling: Shape s = new Blob(); s.get();!
 Call site 434
•  Compiler knows that s is a Shape

–  Suppose EAX holds object pointer

•  Cached interface dispatch:
// push parameters
 Mov tmp, [EAX]!
 Cmp tmp, [cacheClass434]!
 Jnz __miss434!
 Call [cacheCode434]!
__miss434:!
 // do the slow search

CIS 341: Compilers 10

Blob

Blob fields

“Blob”!

super!

itable!

setCorner!

get!

set!

Class Info
s!

cacheClass434:!
 “Blob”!
cacheCode434:!
 <ptr>!

Table in data seg.

Option 1 variant 2: Hash Table
•  Idea: don’t try to give all methods unique indices

–  Resolve conflicts by checking that the entry is correct at dispatch

•  Use hashing to generate indices
–  Range of the hash values should be relatively small
–  Hash indices can be pre computed, but passed as an extra parameter

CIS 341: Compilers 11

interface Shape { ! ! ! ! ! !D.V.Index!
 void setCorner(int w, Point p);! !hash(“setCorner”) = 11!
}!

interface Color {!
 float get(int rgb); ! ! ! ! !hash(“get”) = 4!
 void set(int rgb, float value);! !hash(“set”) = 7!
}!

class Blob implements Shape, Color {!
 void setCorner(int w, Point p) {…} ! ! !11!
 float get(int rgb) {…} ! ! ! ! ! !4!
 void set(int rgb, float value) {…} ! ! !7!
}!

Dispatch with Hash Tables
•  What if there is a conflict?

–  Entries containing several methods point to code that resolves conflict (e.g. by
searching through a table based on class name)

•  Advantage:
–  Simple, basic code dispatch is ���

(almost) identical
–  Reasonably���

efficient

•  Disadvantage:
–  Wasted space in DV
–  Extra argument needed for resolution
–  Slower dispatch if conflict

CIS 341: Compilers 12

Blob

Blob fields

“Blob”!

super!

<empty>!

…!

get!

…!

set!

<empty>!

setCorner!

Class Info
s!

Fixed #
Of entries

Option 2 variant 1: Sparse D.V. Tables
•  Give up on separate compilation…
•  Now we have access to the whole class hierarchy.

•  So: ensure that no two methods in the same class are allocated the
same D.V. offset.
–  Allow holes in the D.V. just like the hash table solution
–  Unlike hash table, there is never a conflict!

•  Compiler needs to construct the method indices
–  Graph coloring techniques can be used to construct the D.V. layouts in a

reasonably efficient way (to minimize size)
–  Finding an optimal solution is NP complete!

CIS 341: Compilers 13

Example Object Layout
•  Advantage: Identical dispatch and performance to single-inheritance

case
•  Disadvantage: Must know entire class hierarchy

CIS 341: Compilers 14

Blob

Blob fields

“Blob”!

super!

setCorner!

set!

get!

Class Info
s!

Minimize #
Of entries

Option 2 variant 2: Binary Search Trees
•  Idea: Use conditional branches not indirect jumps
•  Each object has a class index (unique per class) as first word

–  Instead of D.V. pointer (no need for one!)
•  Method invocation uses range tests to select among n possible classes in lg n time

–  Direct branches to code at the leaves.

Shape x;!
x.SetCorner(…);!

 Mov eax, ⟦x⟧!
 Mov ebx, [eax]!
 Cmp ebx, 1!
 Jle __L1!
 Cmp ebx, 2!
 Je __CircleSetCorner!
 Jmp __EggSetCorner!
__L1:!
 Cmp ebx, 0!
 Je __BlobSetCorner!
 Jmp __RectangleSetCorner!

CIS 341: Compilers 15

Color Shape

RGBColor Blob Rectangle Circle Egg
 3 0 1 2 4

// interfaces

// classes

0 1 2 4

Decision tree

Search Tree Tradeoffs
•  Binary decision trees work well if the distribution of classes that may

appear at a call site is skewed.
–  Branch prediction hardware eliminates the branch stall of ~10 cycles (on

X86)

•  Can use profiling to find the common paths for each call site
individually
–  Put the common case at the top of the decision tree (so less search)
–  90%/10% rule of thumb: 90% of the invocations at a call site go to the

same class

•  Drawbacks:
–  Like sparse D.V.’s you need the whole class hierarchy to know how many

leaves you need in the search tree.
–  Indirect jumps can have better performance if there are >2 classes (at most

one mispredict)

CIS 341: Compilers 16

Option 3: Multiple Dispatch Vectors
•  Duplicate the D.V. pointers in the object representation.
•  Static type of the object determines which D.V. is used.

CIS 341: Compilers 17

interface Shape {! ! ! ! !D.V.Index!
 void setCorner(int w, Point p);! ! !0!
}!

interface Color {!
 float get(int rgb);! ! ! ! ! !0!

 void set(int rgb, float value);! ! !1!
}!

class Blob implements Shape, Color {!
 void setCorner(int w, Point p) {…}!
 float get(int rgb) {…} ! ! ! ! !!

 void set(int rgb, float value) {…} ! ! !!
}!

Shape
setCorner!
D.V.

Color
get!

set!

D.V.

get!

set!

setCorner!

Color

Blob, Shape

Multiple Dispatch Vectors
•  A reference to an object might have multiple “entry points”

–  Each entry point corresponds to a dispatch vector
–  Which one is used depends on the statically known type of the program.

Blob b = new Blob();!
Color y = b; // implicit cast!

•  Compile
Color y = b;
As
Mov y, ⟦b⟧ + 4 !

CIS 341: Compilers 18

get!

set!

setCorner!

y

b

Multiple D.V. Summary
•  Benefit: Efficient dispatch, same cost as for multiple inheritance
•  Drawbacks:

–  Cast has a runtime cost
–  More complicated programming model… hard to understand/debug?

•  What about multiple inheritance and fields?

CIS 341: Compilers 19

OTHER CONSIDERATIONS

Zdancewic CIS 341: Compilers 20

Multiple inheritance of fields
Static fields and methods
Comparison with closures

Multiple Inheritance: Fields
•  Multiple supertypes (Java): methods conflict (as we saw)
•  Multiple inheritance (C++): fields can also conflict
•  Location of the object’s fields can no longer be a constant offset from

the start of the object.

class Color {!
 float r, g, b; /* offsets: 4,8,12 */
}!
class Shape {!
 Point LL, UR; /* offsets: 4, 8 */
}!
class ColoredShape extends !
Color, Shape {!
 int z;!
}!

CIS 341: Compilers 21

D.V.!

r!

g!

b!

Color

D.V.!

LL!

UR!

Shape

ColoredShape ??

C++ approach:

•  Add pointers to the
superclass fields
–  Need to have multiple

dispatch vectors
anyway (to deal with
methods)

•  Extra indirection
needed to access
superclass fields

•  Used even if there is a
single superclass
–  Uniformity

CIS 341: Compilers 22

D.V.!

r!

g!

b!

Color

D.V.!

LL!

UR!

ColoredShape D.V.!

super!

super!

z!

Shape

Compiling Static Methods
•  Java supports static methods and fields

–  Static methods and fields belong to a class, not the instances of the class.
–  Storage is allocated with the dispatch vectors
–  Static methods have no “this” parameter (no receiver object)

•  A.m() and A.f compute the address of A’s vtable to access m and
f!

•  Methods are compiled exactly like normal top-level procedures
–  No slots needed in the dispatch vectors
–  No implicit “this” parameter
–  They’re not really methods (they can only access static fields of the class)

CIS 341: Compilers 23

Compiling Constructors
•  Java, C++ classes can declare constructors that create new objects.

–  Initialization code may have parameters supplied to the constructor
–  e.g. new Color(r,g,b);!

•  Modula-3: object constructors take no parameters
–  e.g. new Color;!
–  Initialization would typically be done in a separate method.

•  Constructors are compiled just like static methods, except:
–  The “this” variable is initialized to a newly allocated block of memory big

enough to hold D.V. pointer + fields according to object layout
–  The D.V. pointer is initialized
–  The return value of the constructor is the (newly created) “this” pointer.
–  There are issues with consistency and typechecking

CIS 341: Compilers 24

Observe: Closure ≈ Single-method Object

•  Free variables
•  Environment pointer
•  Closure for function:
fun (x,y) ->  

x + y + a + b!

Fields
“this” parameter
Instance of this class:
class C {!
 int a, b;!
 int apply(x,y) { !
 x + y + a + b!
 }!
}!

CIS 341: Compilers 25

≈
≈

≈

D.V.!

a!

b!
__apply: <code>

env!

__apply!

a!

b!

__apply: <code>
__apply!

TYPECHECKING CLASSES

Zdancewic CIS 341: Compilers 26

See oat.pdf (Project 5 version)

